Merge branch 'master' into patch-1

This commit is contained in:
Jon Staab 2023-05-12 05:10:45 -07:00 committed by GitHub
commit e5302f84c7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
39 changed files with 2131 additions and 155 deletions

24
01.md
View File

@ -4,7 +4,7 @@ NIP-01
Basic protocol flow description
-------------------------------
`draft` `mandatory` `author:fiatjaf` `author:distbit` `author:scsibug` `author:kukks` `author:jb55`
`draft` `mandatory` `author:fiatjaf` `author:distbit` `author:scsibug` `author:kukks` `author:jb55` `author:semisol`
This NIP defines the basic protocol that should be implemented by everybody. New NIPs may add new optional (or mandatory) fields and messages and features to the structures and flows described here.
@ -16,17 +16,17 @@ The only object type that exists is the `event`, which has the following format
```json
{
"id": <32-bytes sha256 of the the serialized event data>
"pubkey": <32-bytes hex-encoded public key of the event creator>,
"id": <32-bytes lowercase hex-encoded sha256 of the serialized event data>
"pubkey": <32-bytes lowercase hex-encoded public key of the event creator>,
"created_at": <unix timestamp in seconds>,
"kind": <integer>,
"tags": [
["e", <32-bytes hex of the id of another event>, <recommended relay URL>],
["p", <32-bytes hex of the key>, <recommended relay URL>],
["p", <32-bytes hex of a pubkey>, <recommended relay URL>],
... // other kinds of tags may be included later
],
"content": <arbitrary string>,
"sig": <64-bytes signature of the sha256 hash of the serialized event data, which is the same as the "id" field>
"sig": <64-bytes hex of the signature of the sha256 hash of the serialized event data, which is the same as the "id" field>
}
```
@ -55,7 +55,7 @@ Clients can send 3 types of messages, which must be JSON arrays, according to th
* `["REQ", <subscription_id>, <filters JSON>...]`, used to request events and subscribe to new updates.
* `["CLOSE", <subscription_id>]`, used to stop previous subscriptions.
`<subscription_id>` is a random string that should be used to represent a subscription.
`<subscription_id>` is an arbitrary, non-empty string of max length 64 chars, that should be used to represent a subscription.
`<filters>` is a JSON object that determines what events will be sent in that subscription, it can have the following attributes:
@ -66,8 +66,8 @@ Clients can send 3 types of messages, which must be JSON arrays, according to th
"kinds": <a list of a kind numbers>,
"#e": <a list of event ids that are referenced in an "e" tag>,
"#p": <a list of pubkeys that are referenced in a "p" tag>,
"since": <a timestamp, events must be newer than this to pass>,
"until": <a timestamp, events must be older than this to pass>,
"since": <an integer unix timestamp, events must be newer than this to pass>,
"until": <an integer unix timestamp, events must be older than this to pass>,
"limit": <maximum number of events to be returned in the initial query>
}
```
@ -86,9 +86,10 @@ The `limit` property of a filter is only valid for the initial query and can be
### From relay to client: sending events and notices
Relays can send 2 types of messages, which must also be JSON arrays, according to the following patterns:
Relays can send 3 types of messages, which must also be JSON arrays, according to the following patterns:
* `["EVENT", <subscription_id>, <event JSON as defined above>]`, used to send events requested by clients.
* `["EOSE", <subscription_id>]`, used to indicate the _end of stored events_ and the beginning of events newly received in real-time.
* `["NOTICE", <message>]`, used to send human-readable error messages or other things to clients.
This NIP defines no rules for how `NOTICE` messages should be sent or treated.
@ -98,7 +99,7 @@ This NIP defines no rules for how `NOTICE` messages should be sent or treated.
## Basic Event Kinds
- `0`: `set_metadata`: the `content` is set to a stringified JSON object `{name: <username>, about: <string>, picture: <url, string>}` describing the user who created the event. A relay may delete past `set_metadata` events once it gets a new one for the same pubkey.
- `1`: `text_note`: the `content` is set to the text content of a note (anything the user wants to say). Non-plaintext notes should instead use kind 1000-10000 as described in [NIP-16](16.md).
- `1`: `text_note`: the `content` is set to the plaintext content of a note (anything the user wants to say). Do not use Markdown! Clients should not have to guess how to interpret content like `[]()`. Use different event kinds for parsable content.
- `2`: `recommend_server`: the `content` is set to the URL (e.g., `wss://somerelay.com`) of a relay the event creator wants to recommend to its followers.
A relay may choose to treat different message kinds differently, and it may or may not choose to have a default way to handle kinds it doesn't know about.
@ -106,5 +107,6 @@ A relay may choose to treat different message kinds differently, and it may or m
## Other Notes:
- Clients should not open more than one websocket to each relay. One channel can support an unlimited number of subscriptions, so clients should do that.
- The `tags` array can store a tag identifier as the first element of each subarray, plus arbitrary information afterward (always as strings). This NIP defines `"p"` — meaning "pubkey", which points to a pubkey of someone that is referred to in the event —, and `"e"` — meaning "event", which points to the id of an event this event is quoting, replying to or referring to somehow.
- The `tags` array can store a tag identifier as the first element of each subarray, plus arbitrary information afterward (always as strings). This NIP defines `"p"` — meaning "pubkey", which points to a pubkey of someone that is referred to in the event —, and `"e"` — meaning "event", which points to the id of an event this event is quoting, replying to or referring to somehow. See [NIP-10](https://github.com/nostr-protocol/nips/blob/127d5518bfa9a4e4e7510490c0b8d95e342dfa4b/10.md) for a detailed description of "e" and "p" tags.
- The `<recommended relay URL>` item present on the `"e"` and `"p"` tags is an optional (could be set to `""`) URL of a relay the client could attempt to connect to fetch the tagged event or other events from a tagged profile. It MAY be ignored, but it exists to increase censorship resistance and make the spread of relay addresses more seamless across clients.
- Clients should use the created_at field to judge the age of a metadata event and completely replace older metadata events with newer metadata events regardless of the order in which they arrive. Clients should not merge any filled fields within older metadata events into empty fields of newer metadata events.

3
02.md
View File

@ -22,6 +22,7 @@ For example:
],
"content": "",
...other fields
}
```
Every new contact list that gets published overwrites the past ones, so it should contain all entries. Relays and clients SHOULD delete past contact lists as soon as they receive a new one.
@ -38,7 +39,7 @@ A client may rely on the kind-3 event to display a list of followed people by pr
### Relay sharing
A client may publish a full list of contacts with good relays for each of their contacts so other clients may use these to update their internal relay lists if needed, increasing censorship-resistant.
A client may publish a full list of contacts with good relays for each of their contacts so other clients may use these to update their internal relay lists if needed, increasing censorship-resistance.
### Petname scheme

6
03.md
View File

@ -10,11 +10,11 @@ When there is an OTS available it MAY be included in the existing event body und
```
{
id: ...,
kind: ...,
"id": ...,
"kind": ...,
...,
...,
ots: <base64-encoded OTS file data>
"ots": <base64-encoded OTS file data>
}
```

16
04.md
View File

@ -14,19 +14,21 @@ A special event with kind `4`, meaning "encrypted direct message". It is suppose
**`tags`** MAY contain an entry identifying the previous message in a conversation or a message we are explicitly replying to (such that contextual, more organized conversations may happen), in the form `["e", "<event_id>"]`.
**Note**: By default in the [libsecp256k1](https://github.com/bitcoin-core/secp256k1) ECDH implementation, the secret is the SHA256 hash of the shared point (both X and Y coordinates). In Nostr, only the X coordinate of the shared point is used as the secret and it is NOT hashed. If using libsecp256k1, a custom function that copies the X coordinate must be passed as the `hashfp` argument in `secp256k1_ecdh`. See [here](https://github.com/bitcoin-core/secp256k1/blob/master/src/modules/ecdh/main_impl.h#L29).
Code sample for generating such an event in JavaScript:
```js
import crypto from 'crypto'
import * as secp from 'noble-secp256k1'
import * as secp from '@noble/secp256k1'
let sharedPoint = secp.getSharedSecret(ourPrivateKey, '02' + theirPublicKey)
let sharedX = sharedPoint.substr(2, 64)
let sharedX = sharedPoint.slice(1, 33)
let iv = crypto.randomFillSync(new Uint8Array(16))
var cipher = crypto.createCipheriv(
'aes-256-cbc',
Buffer.from(sharedX, 'hex'),
Buffer.from(sharedX),
iv
)
let encryptedMessage = cipher.update(text, 'utf8', 'base64')
@ -41,3 +43,11 @@ let event = {
content: encryptedMessage + '?iv=' + ivBase64
}
```
## Security Warning
This standard does not go anywhere near what is considered the state-of-the-art in encrypted communication between peers, and it leaks metadata in the events, therefore it must not be used for anything you really need to keep secret, and only with relays that use `AUTH` to restrict who can fetch your `kind:4` events.
## Client Implementation Warning
Clients *should not* search and replace public key or note references from the `.content`. If processed like a regular text note (where `@npub...` is replaced with `#[0]` with a `["p", "..."]` tag) the tags are leaked and the mentioned user will receive the message in their inbox.

4
06.md
View File

@ -8,8 +8,8 @@ Basic key derivation from mnemonic seed phrase
[BIP39](https://bips.xyz/39) is used to generate mnemonic seed words and derive a binary seed from them.
[BIP32](https://bips.xyz/32) is used to derive the path `m/44'/1237'/0'/0/0` (according to the Nostr entry on [SLIP44](https://github.com/satoshilabs/slips/blob/master/slip-0044.md)).
[BIP32](https://bips.xyz/32) is used to derive the path `m/44'/1237'/<account>'/0/0` (according to the Nostr entry on [SLIP44](https://github.com/satoshilabs/slips/blob/master/slip-0044.md)).
This is the default for a basic, normal, single-key client.
A basic client can simply use an `account` of `0` to derive a single key. For more advanced use-cases you can increment `account`, allowing generation of practically infinite keys from the 5-level path with hardened derivation.
Other types of clients can still get fancy and use other derivation paths for their own other purposes.

11
07.md
View File

@ -12,7 +12,7 @@ That object must define the following methods:
```
async window.nostr.getPublicKey(): string // returns a public key as hex
async window.nostr.signEvent(event: Event): Event // takes an event object and returns it with the `sig`
async window.nostr.signEvent(event: Event): Event // takes an event object, adds `id`, `pubkey` and `sig` and returns it
```
Aside from these two basic above, the following functions can also be implemented optionally:
@ -24,6 +24,9 @@ async window.nostr.nip04.decrypt(pubkey, ciphertext): string // takes ciphertext
### Implementation
- [nos2x](https://github.com/fiatjaf/nos2x) is available as a Chromium extension that provides such capabilities.
- [Alby](https://getalby.com) is a Bitcoin extension that also provides a compatible `window.nostr`.
- [Blockcore](https://www.blockcore.net/wallet)
- [horse](https://github.com/fiatjaf/horse) (Chrome and derivatives)
- [nos2x](https://github.com/fiatjaf/nos2x) (Chrome and derivatives)
- [Alby](https://getalby.com) (Chrome and derivatives, Firefox, Safari)
- [Blockcore](https://www.blockcore.net/wallet) (Chrome and derivatives)
- [nos2x-fox](https://diegogurpegui.com/nos2x-fox/) (Firefox)
- [Flamingo](https://www.getflamingo.org/) (Chrome and derivatives)

6
08.md
View File

@ -1,10 +1,12 @@
> __Warning__ `unrecommended`: deprecated in favor of [NIP-27](27.md)
NIP-08
======
Handling Mentions
-----------------
`final` `optional` `author:fiatjaf` `author:scsibug`
`final` `unrecommended` `optional` `author:fiatjaf` `author:scsibug`
This document standardizes the treatment given by clients of inline mentions of other events and pubkeys inside the content of `text_note`s.
@ -15,3 +17,5 @@ Once a mention is identified, for example, the pubkey `27866e9d854c78ae625b867ee
The same process applies for mentioning event IDs.
A client that receives a `text_note` event with such `#[index]` mentions in its `.content` CAN do a search-and-replace using the actual contents from the `.tags` array with the actual pubkey or event ID that is mentioned, doing any desired context augmentation (for example, linking to the pubkey or showing a preview of the mentioned event contents) it wants in the process.
Where `#[index]` has an `index` that is outside the range of the tags array or points to a tag that is not an `e` or `p` tag or a tag otherwise declared to support this notation, the client MUST NOT perform such replacement or augmentation, but instead display it as normal text.

2
09.md
View File

@ -33,7 +33,7 @@ Relays SHOULD continue to publish/share the deletion events indefinitely, as cli
## Client Usage
Clients MAY choose to fully hide any events that are referenced by valid deletion events. This includes text notes, direct messages, or other yet-to-be defined event kinds. Alternatively, they MAY show the event along with an icon or other indication that the author has "disowned" the event. The `content` field MAY also be used to replace the deleted events own content, although a user interface should clearly indicate that this is a deletion reason, not the original content.
Clients MAY choose to fully hide any events that are referenced by valid deletion events. This includes text notes, direct messages, or other yet-to-be defined event kinds. Alternatively, they MAY show the event along with an icon or other indication that the author has "disowned" the event. The `content` field MAY also be used to replace the deleted events' own content, although a user interface should clearly indicate that this is a deletion reason, not the original content.
A client MUST validate that each event `pubkey` referenced in the `e` tag of the deletion request is identical to the deletion request `pubkey`, before hiding or deleting any event. Relays can not, in general, perform this validation and should not be treated as authoritative.

6
10.md
View File

@ -43,10 +43,10 @@ They are citings from this event. `root-id` and `reply-id` are as above.
Where:
* `<event-id>` is the id of the event being referenced.
* `<relay-url>` is the URL of a recommended relay associated with the reference. It is NOT optional.
* `<marker>` is optional and if present is one of `"reply"` or `"root"`
* `<relay-url>` is the URL of a recommended relay associated with the reference. Clients SHOULD add a valid `<relay-URL>` field, but may instead leave it as `""`.
* `<marker>` is optional and if present is one of `"reply"`, `"root"`, or `"mention"`.
**The order of marked "e" tags is not relevant.** Those marked with `"reply"` denote the `<reply-id>`. Those marked with `"root"` denote the root id of the reply thread.
**The order of marked "e" tags is not relevant.** Those marked with `"reply"` denote the id of the reply event being responded to. Those marked with `"root"` denote the root id of the reply thread being responded to. For top level replies (those replying directly to the root event), only the `"root"` marker should be used. Those marked with `"mention"` denote a quoted or reposted event id.
A direct reply to the root of a thread should have a single marked "e" tag of type "root".

242
11.md
View File

@ -4,7 +4,7 @@ NIP-11
Relay Information Document
---------------------------
`draft` `optional` `author:scsibug`
`draft` `optional` `author:scsibug` `author:doc-hex` `author:cameri`
Relays may provide server metadata to clients to inform them of capabilities, administrative contacts, and various server attributes. This is made available as a JSON document over HTTP, on the same URI as the relay's websocket.
@ -12,13 +12,13 @@ When a relay receives an HTTP(s) request with an `Accept` header of `application
```json
{
name: <string identifying relay>,
description: <string with detailed information>,
pubkey: <administrative contact pubkey>,
contact: <administrative alternate contact>,
supported_nips: <a list of NIP numbers supported by the relay>,
software: <string identifying relay software URL>,
version: <string version identifier>
"name": <string identifying relay>,
"description": <string with detailed information>,
"pubkey": <administrative contact pubkey>,
"contact": <administrative alternate contact>,
"supported_nips": <a list of NIP numbers supported by the relay>,
"software": <string identifying relay software URL>,
"version": <string version identifier>
}
```
@ -56,3 +56,229 @@ The relay server implementation MAY be provided in the `software` attribute. If
### Version ###
The relay MAY choose to publish its software version as a string attribute. The string format is defined by the relay implementation. It is recommended this be a version number or commit identifier.
Extra Fields
-----------------
### Server Limitations ###
These are limitations imposed by the relay on clients. Your client
should expect that requests which exceed these *practical* limitations
are rejected or fail immediately.
```json
{
...
"limitation": {
"max_message_length": 16384,
"max_subscriptions": 20,
"max_filters": 100,
"max_limit": 5000,
"max_subid_length": 100,
"min_prefix": 4,
"max_event_tags": 100,
"max_content_length": 8196,
"min_pow_difficulty": 30,
"auth_required": true,
"payment_required": true,
}
...
}
```
- `max_message_length`: this is the maximum number of bytes for incoming JSON that the relay
will attempt to decode and act upon. When you send large subscriptions, you will be
limited by this value. It also effectively limits the maximum size of any event. Value is
calculated from `[` to `]` and is after UTF-8 serialization (so some unicode characters
will cost 2-3 bytes). It is equal to the maximum size of the WebSocket message frame.
- `max_subscriptions`: total number of subscriptions that may be
active on a single websocket connection to this relay. It's possible
that authenticated clients with a (paid) relationship to the relay
may have higher limits.
- `max_filters`: maximum number of filter values in each subscription.
Must be one or higher.
- `max_subid_length`: maximum length of subscription id as a string.
- `min_prefix`: for `authors` and `ids` filters which are to match against
a hex prefix, you must provide at least this many hex digits in the prefix.
- `max_limit`: the relay server will clamp each filter's `limit` value to this number.
This means the client won't be able to get more than this number
of events from a single subscription filter. This clamping is typically done silently
by the relay, but with this number, you can know that there are additional results
if you narrowed your filter's time range or other parameters.
- `max_event_tags`: in any event, this is the maximum number of elements in the `tags` list.
- `max_content_length`: maximum number of characters in the `content`
field of any event. This is a count of unicode characters. After
serializing into JSON it may be larger (in bytes), and is still
subject to the `max_message_length`, if defined.
- `min_pow_difficulty`: new events will require at least this difficulty of PoW,
based on [NIP-13](13.md), or they will be rejected by this server.
- `auth_required`: this relay requires [NIP-42](42.md) authentication
to happen before a new connection may perform any other action.
Even if set to False, authentication may be required for specific actions.
- `payment_required`: this relay requires payment before a new connection may perform any action.
### Event Retention ###
There may be a cost associated with storing data forever, so relays
may wish to state retention times. The values stated here are defaults
for unauthenticated users and visitors. Paid users would likely have
other policies.
Retention times are given in seconds, with `null` indicating infinity.
If zero is provided, this means the event will not be stored at
all, and preferably an error will be provided when those are received.
```json
{
...
"retention": [
{ "kinds": [0, 1, [5, 7], [40, 49]], "time": 3600 },
{ "kinds": [[40000, 49999]], "time": 100 },
{ "kinds": [[30000, 39999]], "count": 1000 },
{ "time": 3600, "count": 10000 }
]
...
}
```
`retention` is a list of specifications: each will apply to either all kinds, or
a subset of kinds. Ranges may be specified for the kind field as a tuple of inclusive
start and end values. Events of indicated kind (or all) are then limited to a `count`
and/or time period.
It is possible to effectively blacklist Nostr-based protocols that rely on
a specific `kind` number, by giving a retention time of zero for those `kind` values.
While that is unfortunate, it does allow clients to discover servers that will
support their protocol quickly via a single HTTP fetch.
There is no need to specify retention times for _ephemeral events_ as defined
in [NIP-16](16.md) since they are not retained.
### Content Limitations ###
Some relays may be governed by the arbitrary laws of a nation state. This
may limit what content can be stored in cleartext on those relays. All
clients are encouraged to use encryption to work around this limitation.
It is not possible to describe the limitations of each country's laws
and policies which themselves are typically vague and constantly shifting.
Therefore, this field allows the relay operator to indicate which
countries' laws might end up being enforced on them, and then
indirectly on their users' content.
Users should be able to avoid relays in countries they don't like,
and/or select relays in more favourable zones. Exposing this
flexibility is up to the client software.
```json
{
...
"relay_countries": [ "CA", "US" ],
...
}
```
- `relay_countries`: a list of two-level ISO country codes (ISO 3166-1 alpha-2) whose
laws and policies may affect this relay. `EU` may be used for European Union countries.
Remember that a relay may be hosted in a country which is not the
country of the legal entities who own the relay, so it's very
likely a number of countries are involved.
### Community Preferences ###
For public text notes at least, a relay may try to foster a
local community. This would encourage users to follow the global
feed on that relay, in addition to their usual individual follows.
To support this goal, relays MAY specify some of the following values.
```json
{
...
"language_tags": [ "en", "en-419" ],
"tags": [ "sfw-only", "bitcoin-only", "anime" ],
"posting_policy": "https://example.com/posting-policy.html",
...
}
```
- `language_tags` is an ordered list
of [IETF language tags](https://en.wikipedia.org/wiki/IETF_language_tag) indicating
the major languages spoken on the relay.
- `tags` is a list of limitations on the topics to be discussed.
For example `sfw-only` indicates that only "Safe For Work" content
is encouraged on this relay. This relies on assumptions of what the
"work" "community" feels "safe" talking about. In time, a common
set of tags may emerge that allow users to find relays that suit
their needs, and client software will be able to parse these tags easily.
The `bitcoin-only` tag indicates that any *altcoin*, *"crypto"* or *blockchain*
comments will be ridiculed without mercy.
- `posting_policy` is a link to a human-readable page which specifies the
community policies for the relay. In cases where `sfw-only` is True, it's
important to link to a page which gets into the specifics of your posting policy.
The `description` field should be used to describe your community
goals and values, in brief. The `posting_policy` is for additional
detail and legal terms. Use the `tags` field to signify limitations
on content, or topics to be discussed, which could be machine
processed by appropriate client software.
### Pay-To-Relay ###
Relays that require payments may want to expose their fee schedules.
```json
{
...
"payments_url": "https://my-relay/payments",
"fees": {
"admission": [{ "amount": 1000000, "unit": "msats" }],
"subscription": [{ "amount": 5000000, "unit": "msats", "period": 2592000 }],
"publication": [{ "kinds": [4], "amount": 100, "unit": "msats" }],
},
...
}
```
### Examples ###
As of 2 May 2023 the following `curl` command provided these results.
>curl -H "Accept: application/nostr+json" https://eden.nostr.land
{"name":"eden.nostr.land",
"description":"Eden Nostr Land - Toronto 1-01",
"pubkey":"00000000827ffaa94bfea288c3dfce4422c794fbb96625b6b31e9049f729d700",
"contact":"me@ricardocabral.io",
"supported_nips":[1,2,4,9,11,12,15,16,20,22,26,28,33,40],
"supported_nip_extensions":["11a"],
"software":"git+https://github.com/Cameri/nostream.git",
"version":"1.22.6",
"limitation":{"max_message_length":1048576,
"max_subscriptions":10,
"max_filters":2500,
"max_limit":5000,
"max_subid_length":256,
"min_prefix":4,
"max_event_tags":2500,
"max_content_length":65536,
"min_pow_difficulty":0,
"auth_required":false,
"payment_required":true},
"payments_url":"https://eden.nostr.land/invoices",
"fees":{"admission":[{"amount":5000000,"unit":"msats"}],
"publication":[]}}

76
13.md
View File

@ -10,13 +10,15 @@ This NIP defines a way to generate and interpret Proof of Work for nostr notes.
`difficulty` is defined to be the number of leading zero bits in the `NIP-01` id. For example, an id of `000000000e9d97a1ab09fc381030b346cdd7a142ad57e6df0b46dc9bef6c7e2d` has a difficulty of `36` with `36` leading 0 bits.
`002f...` is `0000 0000 0010 1111...` in binary, which has 10 leading zeroes. Do not forget to count leading zeroes for hex digits <= `7`.
Mining
------
To generate PoW for a `NIP-01` note, a `nonce` tag is used:
```json
{"content": "It's just me mining my own business", "tags": [["nonce", "1", "20"]]}
{"content": "It's just me mining my own business", "tags": [["nonce", "1", "21"]]}
```
When mining, the second entry to the nonce tag is updated, and then the id is recalculated (see [NIP-01](./01.md)). If the id has the desired number of leading zero bits, the note has been mined. It is recommended to update the `created_at` as well during this process.
@ -36,7 +38,7 @@ Example mined note
[
"nonce",
"776797",
"20"
"21"
]
],
"content": "It's just me mining my own business",
@ -47,33 +49,61 @@ Example mined note
Validating
----------
Here is some reference C code for calculating the difficulty (aka number of leading zero bits) in a nostr note id:
Here is some reference C code for calculating the difficulty (aka number of leading zero bits) in a nostr event id:
```c
int zero_bits(unsigned char b)
{
int n = 0;
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
if (b == 0)
return 8;
int countLeadingZeroes(const char *hex) {
int count = 0;
while (b >>= 1)
n++;
for (int i = 0; i < strlen(hex); i++) {
int nibble = (int)strtol((char[]){hex[i], '\0'}, NULL, 16);
if (nibble == 0) {
count += 4;
} else {
count += __builtin_clz(nibble) - 28;
break;
}
}
return 7-n;
return count;
}
/* find the number of leading zero bits in a hash */
int count_leading_zero_bits(unsigned char *hash)
{
int bits, total, i;
for (i = 0, total = 0; i < 32; i++) {
bits = zero_bits(hash[i]);
total += bits;
if (bits != 8)
break;
}
return total;
int main(int argc, char *argv[]) {
if (argc != 2) {
fprintf(stderr, "Usage: %s <hex_string>\n", argv[0]);
return 1;
}
const char *hex_string = argv[1];
int result = countLeadingZeroes(hex_string);
printf("Leading zeroes in hex string %s: %d\n", hex_string, result);
return 0;
}
```
Here is some JavaScript code for doing the same thing:
```javascript
// hex should be a hexadecimal string (with no 0x prefix)
function countLeadingZeroes(hex) {
let count = 0;
for (let i = 0; i < hex.length; i++) {
const nibble = parseInt(hex[i], 16);
if (nibble === 0) {
count += 4;
} else {
count += Math.clz32(nibble) - 28;
break;
}
}
return count;
}
```
@ -90,4 +120,4 @@ $ echo '["REQ", "subid", {"ids": ["000000000"]}]' | websocat wss://some-relay.c
Delegated Proof of Work
-----------------------
Since the `NIP-01` note id does not commit to any signature, PoW can be outsourced to PoW providers, perhaps for a fee. This provides a way for clients to get their messages out to PoW-restricted relays without having to do any work themselves, which is useful for energy constrained devices like on mobile
Since the `NIP-01` note id does not commit to any signature, PoW can be outsourced to PoW providers, perhaps for a fee. This provides a way for clients to get their messages out to PoW-restricted relays without having to do any work themselves, which is useful for energy-constrained devices like mobile phones.

215
15.md
View File

@ -1,21 +1,214 @@
NIP-15
======
End of Stored Events Notice
---------------------------
Nostr Marketplace (for resilient marketplaces)
-----------------------------------
`final` `optional` `author:Semisol`
`draft` `optional` `author:fiatjaf` `author:benarc` `author:motorina0` `author:talvasconcelos`
Relays may support notifying clients when all stored events have been sent.
> Based on https://github.com/lnbits/Diagon-Alley
If a relay supports this NIP, the relay SHOULD send the client a `EOSE` message in the format `["EOSE", <subscription_id>]` after it has sent all the events it has persisted and it indicates all the events that come after this message are newly published.
> Implemented here https://github.com/lnbits/nostrmarket
Client Behavior
---------------
## Terms
Clients SHOULD use the `supported_nips` field to learn if a relay supports end of stored events notices.
- `merchant` - seller of products with NOSTR key-pair
- `customer` - buyer of products with NOSTR key-pair
- `product` - item for sale by the `merchant`
- `stall` - list of products controlled by `merchant` (a `merchant` can have multiple stalls)
- `marketplace` - clientside software for searching `stalls` and purchasing `products`
Motivation
----------
## Nostr Marketplace Clients
The motivation for this proposal is to reduce uncertainty when all events have been sent by a relay to make client code possibly less complex.
### Merchant admin
Where the `merchant` creates, updates and deletes `stalls` and `products`, as well as where they manage sales, payments and communication with `customers`.
The `merchant` admin software can be purely clientside, but for `convenience` and uptime, implementations will likely have a server client listening for NOSTR events.
### Marketplace
`Marketplace` software should be entirely clientside, either as a stand-alone app, or as a purely frontend webpage. A `customer` subscribes to different merchant NOSTR public keys, and those `merchants` `stalls` and `products` become listed and searchable. The marketplace client is like any other ecommerce site, with basket and checkout. `Marketplaces` may also wish to include a `customer` support area for direct message communication with `merchants`.
## `Merchant` publishing/updating products (event)
A merchant can publish these events:
| Kind | | Description | NIP |
|---------|------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| `0 ` | `set_meta` | The merchant description (similar with any `nostr` public key). | [NIP01 ](https://github.com/nostr-protocol/nips/blob/master/01.md) |
| `30017` | `set_stall` | Create or update a stall. | [NIP33](https://github.com/nostr-protocol/nips/blob/master/33.md) (Parameterized Replaceable Event) |
| `30018` | `set_product` | Create or update a product. | [NIP33](https://github.com/nostr-protocol/nips/blob/master/33.md) (Parameterized Replaceable Event) |
| `4 ` | `direct_message` | Communicate with the customer. The messages can be plain-text or JSON. | [NIP09](https://github.com/nostr-protocol/nips/blob/master/09.md) |
| `5 ` | `delete` | Delete a product or a stall. | [NIP05](https://github.com/nostr-protocol/nips/blob/master/05.md) |
### Event `30017`: Create or update a stall.
**Event Content**:
```json
{
"id": <String, UUID generated by the merchant. Sequential IDs (`0`, `1`, `2`...) are discouraged>,
"name": <String, stall name>,
"description": <String (optional), stall description>,
"currency": <String, currency used>,
"shipping": [
{
"id": <String, UUID of the shipping zone, generated by the merchant>,
"name": <String (optional), zone name>,
"cost": <float, cost for shipping. The currency is defined at the stall level>,
"countries": [<String, countries included in this zone>],
}
]
}
```
Fields that are not self-explanatory:
- `shipping`:
- an array with possible shipping zones for this stall. The customer MUST choose exactly one shipping zone.
- shipping to different zones can have different costs. For some goods (digital for example) the cost can be zero.
- the `id` is an internal value used by the merchant. This value must be sent back as the customer selection.
**Event Tags**:
```json
"tags": [["d", <String, id of stall]]
```
- the `d` tag is required by [NIP33](https://github.com/nostr-protocol/nips/blob/master/33.md). Its value MUST be the same as the stall `id`.
### Event `30018`: Create or update a product
**Event Content**:
```json
{
"id": <String, UUID generated by the merchant.Sequential IDs (`0`, `1`, `2`...) are discouraged>,
"stall_id": <String, UUID of the stall to which this product belong to>,
"name": <String, product name>,
"description": <String (optional), product description>,
"images": <[String], array of image URLs, optional>,
"currency": <String, currency used>,
"price": <float, cost of product>,
"quantity": <int, available items>,
"specs": [
[ <String, spec key>, <String, spec value>]
]
}
```
Fields that are not self-explanatory:
- `specs`:
- an array of key pair values. It allows for the Customer UI to present present product specifications in a structure mode. It also allows comparison between products
- eg: `[["operating_system", "Android 12.0"], ["screen_size", "6.4 inches"], ["connector_type", "USB Type C"]]`
_Open_: better to move `spec` in the `tags` section of the event?
**Event Tags**:
```json
"tags": [
["d", <String, id of product],
["t", <String (optional), product category],
["t", <String (optional), product category],
...
]
```
- the `d` tag is required by [NIP33](https://github.com/nostr-protocol/nips/blob/master/33.md). Its value MUST be the same as the product `id`.
- the `t` tag is as searchable tag ([NIP12](https://github.com/nostr-protocol/nips/blob/master/12.md)). It represents different categories that the product can be part of (`food`, `fruits`). Multiple `t` tags can be present.
## Checkout events
All checkout events are sent as JSON strings using ([NIP04](https://github.com/nostr-protocol/nips/blob/master/04.md)).
The `merchant` and the `customer` can exchange JSON messages that represent different actions. Each `JSON` message `MUST` have a `type` field indicating the what the JSON represents. Possible types:
| Message Type | Sent By | Description |
|--------------|----------|---------------------|
| 0 | Customer | New Order |
| 1 | Merchant | Payment Request |
| 2 | Merchant | Order Status Update |
### Step 1: `customer` order (event)
The below json goes in content of [NIP04](https://github.com/nostr-protocol/nips/blob/master/04.md).
```json
{
"id": <String, UUID generated by the customer>,
"type": 0,
"name": <String (optional), ???>,
"address": <String (optional), for physical goods an address should be provided>
"message": "<String (optional), message for merchant>,
"contact": {
"nostr": <32-bytes hex of a pubkey>,
"phone": <String (optional), if the customer wants to be contacted by phone>,
"email": <String (optional), if the customer wants to be contacted by email>,
},
"items": [
{
"product_id": <String, UUID of the product>,
"quantity": <int, how many products the customer is ordering>
}
],
"shipping_id": <String, UUID of the shipping zone>
}
```
_Open_: is `contact.nostr` required?
### Step 2: `merchant` request payment (event)
Sent back from the merchant for payment. Any payment option is valid that the merchant can check.
The below json goes in `content` of [NIP04](https://github.com/nostr-protocol/nips/blob/master/04.md).
`payment_options`/`type` include:
- `url` URL to a payment page, stripe, paypal, btcpayserver, etc
- `btc` onchain bitcoin address
- `ln` bitcoin lightning invoice
- `lnurl` bitcoin lnurl-pay
```json
{
"id": <String, UUID of the order>,
"type": 1,
"message": <String, message to customer, optional>,
"payment_options": [
{
"type": <String, option type>,
"link": <String, url, btc address, ln invoice, etc>
},
{
"type": <String, option type>,
"link": <String, url, btc address, ln invoice, etc>
},
{
"type": <String, option type>,
"link": <String, url, btc address, ln invoice, etc>
}
]
}
```
### Step 3: `merchant` verify payment/shipped (event)
Once payment has been received and processed.
The below json goes in `content` of [NIP04](https://github.com/nostr-protocol/nips/blob/master/04.md).
```json
{
"id": <String, UUID of the order>,
"type": 2,
"message": <String, message to customer>,
"paid": <Bool, true/false has received payment>,
"shipped": <Bool, true/false has been shipped>,
}
```
## Customer support events
Customer support is handled over whatever communication method was specified. If communicating via nostr, NIP-04 is used https://github.com/nostr-protocol/nips/blob/master/04.md.
## Additional
Standard data models can be found here <a href="https://raw.githubusercontent.com/lnbits/nostrmarket/main/models.py">here</a>

4
16.md
View File

@ -16,7 +16,9 @@ Upon a regular event being received, the relay SHOULD send it to all clients wit
Replaceable Events
------------------
A *replaceable event* is defined as an event with a kind `10000 <= n < 20000`.
Upon a replaceable event with a newer timestamp than the currently known latest replaceable event with the same kind being received, and signed by the same key, the old event SHOULD be discarded and replaced with the newer event.
Upon a replaceable event with a newer timestamp than the currently known latest replaceable event with the same kind and author being received, the old event SHOULD be discarded,
effectively replacing what gets returned when querying for
`author:kind` tuples.
Ephemeral Events
----------------

12
18.md
View File

@ -4,16 +4,22 @@ NIP-18
Reposts
-------
`draft` `optional` `author:jb55`
`draft` `optional` `author:jb55` `author:fiatjaf` `author:arthurfranca`
A repost is a `kind 6` note that is used to signal to followers
that another event is worth reading.
The `content` of a repost event is empty.
The `content` of a repost event is empty. Optionally, it MAY contain
the stringified JSON of the reposted note event for quick look up.
The repost event MUST include an `e` tag with the `id` of the note that is
being reposted. That tag SHOULD include a relay URL as its third entry
being reposted. That tag MUST include a relay URL as its third entry
to indicate where it can be fetched.
The repost SHOULD include a `p` tag with the `pubkey` of the event being
reposted.
## Quote Reposts
Quote reposts are `kind 1` events with an embedded `e` tag (see [NIP-08](08.md) and [NIP-27](27.md)).
Because a quote repost includes an `e` tag, it may show up along replies to the reposted note.

18
19.md
View File

@ -34,6 +34,8 @@ These are the possible bech32 prefixes with `TLV`:
- `nprofile`: a nostr profile
- `nevent`: a nostr event
- `nrelay`: a nostr relay
- `naddr`: a nostr parameterized replaceable event coordinate (NIP-33)
These possible standardized `TLV` types are indicated here:
@ -41,13 +43,22 @@ These possible standardized `TLV` types are indicated here:
- depends on the bech32 prefix:
- for `nprofile` it will be the 32 bytes of the profile public key
- for `nevent` it will be the 32 bytes of the event id
- for `nrelay`, this is the relay URL
- for `naddr`, it is the identifier (the `"d"` tag) of the event being referenced
- `1`: `relay`
- A relay in which the entity (profile or event) is more likely to be found, encoded as UTF-8. This may be included multiple times.
- for `nprofile`, `nevent` and `naddr`, _optionally_, a relay in which the entity (profile or event) is more likely to be found, encoded as ascii
- this may be included multiple times
- `2`: `author`
- for `naddr`, the 32 bytes of the pubkey of the event
- for `nevent`, _optionally_, the 32 bytes of the pubkey of the event
- `3`: `kind`
- for `naddr`, the 32-bit unsigned integer of the kind, big-endian
- for `nevent`, _optionally_, the 32-bit unsigned integer of the kind, big-endian
## Examples
- `npub180cvv07tjdrrgpa0j7j7tmnyl2yr6yr7l8j4s3evf6u64th6gkwsyjh6w6` should decode into the public key hex `3bf0c63fcb93463407af97a5e5ee64fa883d107ef9e558472c4eb9aaaefa459d` and vice-versa
- `nsec180cvv07tjdrrgpa0j7j7tmnyl2yr6yr7l8j4s3evf6u64th6gkwsgyumg0` should decode into the private key hex `3bf0c63fcb93463407af97a5e5ee64fa883d107ef9e558472c4eb9aaaefa459d` and vice-versa
- `npub10elfcs4fr0l0r8af98jlmgdh9c8tcxjvz9qkw038js35mp4dma8qzvjptg` should decode into the public key hex `7e7e9c42a91bfef19fa929e5fda1b72e0ebc1a4c1141673e2794234d86addf4e` and vice-versa
- `nsec1vl029mgpspedva04g90vltkh6fvh240zqtv9k0t9af8935ke9laqsnlfe5` should decode into the private key hex `67dea2ed018072d675f5415ecfaed7d2597555e202d85b3d65ea4e58d2d92ffa` and vice-versa
- `nprofile1qqsrhuxx8l9ex335q7he0f09aej04zpazpl0ne2cgukyawd24mayt8gpp4mhxue69uhhytnc9e3k7mgpz4mhxue69uhkg6nzv9ejuumpv34kytnrdaksjlyr9p` should decode into a profile with the following TLV items:
- pubkey: `3bf0c63fcb93463407af97a5e5ee64fa883d107ef9e558472c4eb9aaaefa459d`
- relay: `wss://r.x.com`
@ -56,3 +67,4 @@ These possible standardized `TLV` types are indicated here:
## Notes
- `npub` keys MUST NOT be used in NIP-01 events or in NIP-05 JSON responses, only the hex format is supported there.
- When decoding a bech32-formatted string, TLVs that are not recognized or supported should be ignored, rather than causing an error.

2
20.md
View File

@ -82,7 +82,7 @@ Client Handling
For the `pow:` prefix it may query relay metadata to get the updated difficulty requirement and try again in the background.
For the `invalid:` and `blocked`: prefix the client may wish to show these as styled error popups.
For the `invalid:` and `blocked:` prefix the client may wish to show these as styled error popups.
The prefixes include a colon so that the message can be cleanly separated from the prefix by taking everything after `:` and trimming it.

20
21.md Normal file
View File

@ -0,0 +1,20 @@
NIP-21
======
`nostr:` URI scheme
-------------------
`draft` `optional` `author:fiatjaf`
This NIP standardizes the usage of a common URI scheme for maximum interoperability and openness in the network.
The scheme is `nostr:`.
The identifiers that come after are expected to be the same as those defined in [NIP-19](https://github.com/nostr-protocol/nips/blob/master/19.md) (except `nsec`).
## Examples
- `nostr:npub1sn0wdenkukak0d9dfczzeacvhkrgz92ak56egt7vdgzn8pv2wfqqhrjdv9`
- `nostr:nprofile1qqsrhuxx8l9ex335q7he0f09aej04zpazpl0ne2cgukyawd24mayt8gpp4mhxue69uhhytnc9e3k7mgpz4mhxue69uhkg6nzv9ejuumpv34kytnrdaksjlyr9p`
- `nostr:note1fntxtkcy9pjwucqwa9mddn7v03wwwsu9j330jj350nvhpky2tuaspk6nqc`
- `nostr:nevent1qqstna2yrezu5wghjvswqqculvvwxsrcvu7uc0f78gan4xqhvz49d9spr3mhxue69uhkummnw3ez6un9d3shjtn4de6x2argwghx6egpr4mhxue69uhkummnw3ez6ur4vgh8wetvd3hhyer9wghxuet5nxnepm`

16
22.md
View File

@ -8,7 +8,7 @@ Event `created_at` Limits
Relays may define both upper and lower limits within which they will consider an event's `created_at` to be acceptable. Both the upper and lower limits MUST be unix timestamps in seconds as defined in [NIP-01](01.md).
If a relay supports this NIP, the relay SHOULD send the client a `NOTICE` message saying the event was not stored for the `created_at` timestamp not being within the permitted limits.
If a relay supports this NIP, the relay SHOULD send the client a [NIP-20](20.md) command result saying the event was not stored for the `created_at` timestamp not being within the permitted limits.
Client Behavior
---------------
@ -22,24 +22,24 @@ This NIP formalizes restrictions on event timestamps as accepted by a relay and
The event `created_at` field is just a unix timestamp and can be set to a time in the past or future. Relays accept and share events dated to 20 years ago or 50,000 years in the future. This NIP aims to define a way for relays that do not want to store events with *any* timestamp to set their own restrictions.
[Replaceable events](16.md#replaceable-events) can behave rather unexpected if the user wrote them - or tried to write them - with a wrong system clock. Persisting an update with a backdated system now would result in the update not getting persisted without a `NOTICE` and if they did the last update with a forward dated system, they will again fail to do another update with the now correct time.
[Replaceable events](16.md#replaceable-events) can behave rather unexpectedly if the user wrote them - or tried to write them - with a wrong system clock. Persisting an update with a backdated system now would result in the update not getting persisted without a notification and if they did the last update with a forward dated system, they will again fail to do another update with the now correct time.
A wide adoption of this nip could create a better user experience as it would decrease the amount of events that appear wildly out of order or even from impossible dates in the distant past or future.
A wide adoption of this NIP could create a better user experience as it would decrease the amount of events that appear wildly out of order or even from impossible dates in the distant past or future.
Keep in mind that there is a use case where a user migrates their old posts onto a new relay. If a relay rejects events that were not recently created, it cannot serve this use case.
Python Example
--------------
Python (pseudocode) Example
---------------------------
```python
import time
TIME = int(time.now)
TIME = int(time.time())
LOWER_LIMIT = TIME - (60 * 60 * 24) # Define lower limit as 1 day into the past
UPPER_LIMIT = TIME + (60 * 15) # Define upper limit as 15 minutes into the future
if event.created_at not in range(LOWER_LIMIT, UPPER_LIMIT):
# NOTE: This is one example of a notice message. Relays can change this to notify clients however they like.
ws.send('["NOTICE", "The event created_at field is out of the acceptable range (-24h, +15min) for this relay and was not stored."]')
ws.send('["OK", event.id, False, "invalid: the event created_at field is out of the acceptable range (-24h, +15min) for this relay"]')
```
Note: These are just example limits, the relay operator can choose whatever limits they want.

58
23.md Normal file
View File

@ -0,0 +1,58 @@
NIP-23
======
Long-form Content
-----------------
`draft` `optional` `author:fiatjaf`
This NIP defines `kind:30023` (a parameterized replaceable event according to [NIP-33](33.md)) for long-form text content, generally referred to as "articles" or "blog posts".
"Social" clients that deal primarily with `kind:1` notes should not be expected to implement this NIP.
### Format
The `.content` of these events should be a string text in Markdown syntax.
### Metadata
For the date of the last update the `.created_at` field should be used, for "tags"/"hashtags" (i.e. topics about which the event might be of relevance) the `"t"` event tag should be used, as per NIP-12.
Other metadata fields can be added as tags to the event as necessary. Here we standardize 4 that may be useful, although they remain strictly optional:
- `"title"`, for the article title
- `"image"`, for a URL pointing to an image to be shown along with the title
- `"summary"`, for the article summary
- `"published_at"`, for the timestamp in unix seconds (stringified) of the first time the article was published
### Editability
These articles are meant to be editable, so they should make use of the replaceability feature of NIP-33 and include a `"d"` tag with an identifier for the article. Clients should take care to only publish and read these events from relays that implement that. If they don't do that they should also take care to hide old versions of the same article they may receive.
### Linking
The article may be linked to using the NIP-19 `naddr` code along with the `"a"` tag (see [NIP-33](33.md) and [NIP-19](19.md)).
### References
References to other Nostr notes, articles or profiles must be made according to [NIP-27](27.md), i.e. by using [NIP-21](21.md) `nostr:...` links and optionally adding tags for these (see example below).
## Example Event
```json
{
"kind": 30023,
"created_at": 1675642635,
"content": "Lorem [ipsum][nostr:nevent1qqst8cujky046negxgwwm5ynqwn53t8aqjr6afd8g59nfqwxpdhylpcpzamhxue69uhhyetvv9ujuetcv9khqmr99e3k7mg8arnc9] dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.\n\nRead more at nostr:naddr1qqzkjurnw4ksz9thwden5te0wfjkccte9ehx7um5wghx7un8qgs2d90kkcq3nk2jry62dyf50k0h36rhpdtd594my40w9pkal876jxgrqsqqqa28pccpzu.",
"tags": [
["d", "lorem-ipsum"],
["title", "Lorem Ipsum"],
["published_at", "1296962229"],
["t", "placeholder"],
["e", "b3e392b11f5d4f28321cedd09303a748acfd0487aea5a7450b3481c60b6e4f87", "wss://relay.example.com"],
["a", "30023:a695f6b60119d9521934a691347d9f78e8770b56da16bb255ee286ddf9fda919:ipsum", "wss://relay.nostr.org"]
],
"pubkey": "...",
"id": "..."
}
```

4
25.md
View File

@ -16,9 +16,9 @@ A reaction with `content` set to `-` SHOULD be interpreted as a "dislike" or
"downvote". It SHOULD NOT be counted as a "like", and MAY be displayed as a
downvote or dislike on a post. A client MAY also choose to tally likes against
dislikes in a reddit-like system of upvotes and downvotes, or display them as
separate tallys.
separate tallies.
The `content` MAY be an emoji, in this case it MAY be interpreted as a "like",
The `content` MAY be an emoji, in this case it MAY be interpreted as a "like" or "dislike",
or the client MAY display this emoji reaction on the post.
Tags

76
26.md
View File

@ -19,48 +19,90 @@ This NIP introduces a new tag: `delegation` which is formatted as follows:
"delegation",
<pubkey of the delegator>,
<conditions query string>,
<64-bytes schnorr signature of the sha256 hash of the delegation token>
<delegation token: 64-byte Schnorr signature of the sha256 hash of the delegation string>
]
```
##### Delegation Token
The **delegation token** should be a 64-bytes schnorr signature of the sha256 hash of the following string:
The **delegation token** should be a 64-byte Schnorr signature of the sha256 hash of the following string:
```
nostr:delegation:<pubkey of publisher (delegatee)>:<conditions query string>
```
For example, the token `c33c88ba78ec3c760e49db591ac5f7b129e3887c8af7729795e85a0588007e5ac89b46549232d8f918eefd73e726cb450135314bfda419c030d0b6affe401ec1` is signed by `86f0689bd48dcd19c67a19d994f938ee34f251d8c39976290955ff585f2db42e` and consists of:
##### Conditions Query String
```json
nostr:delegation:62903b1ff41559daf9ee98ef1ae67cc52f301bb5ce26d14baba3052f649c3f49:kind=1&created_at>1640995200
```
The following fields and operators are supported in the above query string:
*Fields*:
1. `kind`
- *Operators*:
- `=${KIND_NUMBER}` - delegatee may only sign events of this kind
2. `created_at`
- *Operators*:
- `<${TIMESTAMP}` - delegatee may only sign events created ***before*** the specified timestamp
- `>${TIMESTAMP}` - delegatee may only sign events created ***after*** the specified timestamp
In order to create a single condition, you must use a supported field and operator. Multiple conditions can be used in a single query string, including on the same field. Conditions must be combined with `&`.
For example, the following condition strings are valid:
- `kind=1&created_at<1675721813`
- `kind=0&kind=1&created_at>1675721813`
- `kind=1&created_at>1674777689&created_at<1675721813`
For the vast majority of use-cases, it is advisable that query strings should include a `created_at` ***after*** condition reflecting the current time, to prevent the delegatee from publishing historic notes on the delegator's behalf.
#### Example
Below is an example of an event published by `62903b1ff41559daf9ee98ef1ae67cc52f301bb5ce26d14baba3052f649c3f49`, on behalf of `86f0689bd48dcd19c67a19d994f938ee34f251d8c39976290955ff585f2db42e`.
```
# Delegator:
privkey: ee35e8bb71131c02c1d7e73231daa48e9953d329a4b701f7133c8f46dd21139c
pubkey: 8e0d3d3eb2881ec137a11debe736a9086715a8c8beeeda615780064d68bc25dd
# Delegatee:
privkey: 777e4f60b4aa87937e13acc84f7abcc3c93cc035cb4c1e9f7a9086dd78fffce1
pubkey: 477318cfb5427b9cfc66a9fa376150c1ddbc62115ae27cef72417eb959691396
```
Delegation string to grant note publishing authorization to the delegatee (477318cf) from now, for the next 30 days, given the current timestamp is `1674834236`.
```json
nostr:delegation:477318cfb5427b9cfc66a9fa376150c1ddbc62115ae27cef72417eb959691396:kind=1&created_at>1674834236&created_at<1677426236
```
The delegator (8e0d3d3e) then signs a SHA256 hash of the above delegation string, the result of which is the delegation token:
```
6f44d7fe4f1c09f3954640fb58bd12bae8bb8ff4120853c4693106c82e920e2b898f1f9ba9bd65449a987c39c0423426ab7b53910c0c6abfb41b30bc16e5f524
```
The delegatee (477318cf) can now construct an event on behalf of the delegator (8e0d3d3e). The delegatee then signs the event with its own private key and publishes.
```json
{
"id": "a080fd288b60ac2225ff2e2d815291bd730911e583e177302cc949a15dc2b2dc",
"pubkey": "62903b1ff41559daf9ee98ef1ae67cc52f301bb5ce26d14baba3052f649c3f49",
"created_at": 1660896109,
"id": "e93c6095c3db1c31d15ac771f8fc5fb672f6e52cd25505099f62cd055523224f",
"pubkey": "477318cfb5427b9cfc66a9fa376150c1ddbc62115ae27cef72417eb959691396",
"created_at": 1677426298,
"kind": 1,
"tags": [
[
"delegation",
"86f0689bd48dcd19c67a19d994f938ee34f251d8c39976290955ff585f2db42e",
"kind=1&created_at>1640995200",
"c33c88ba78ec3c760e49db591ac5f7b129e3887c8af7729795e85a0588007e5ac89b46549232d8f918eefd73e726cb450135314bfda419c030d0b6affe401ec1"
"8e0d3d3eb2881ec137a11debe736a9086715a8c8beeeda615780064d68bc25dd",
"kind=1&created_at>1674834236&created_at<1677426236",
"6f44d7fe4f1c09f3954640fb58bd12bae8bb8ff4120853c4693106c82e920e2b898f1f9ba9bd65449a987c39c0423426ab7b53910c0c6abfb41b30bc16e5f524"
]
],
"content": "Hello world",
"sig": "cd4a3cd20dc61dcbc98324de561a07fd23b3d9702115920c0814b5fb822cc5b7c5bcdaf3fa326d24ed50c5b9c8214d66c75bae34e3a84c25e4d122afccb66eb6"
"content": "Hello, world!",
"sig": "633db60e2e7082c13a47a6b19d663d45b2a2ebdeaf0b4c35ef83be2738030c54fc7fd56d139652937cdca875ee61b51904a1d0d0588a6acd6168d7be2909d693"
}
```
The event should be considered a valid delegation if the conditions are satisfied (`kind=1`, `created_at>1674834236` and `created_at<1677426236` in this example) and, upon validation of the delegation token, are found to be unchanged from the conditions in the original delegation string.
#### Relay & Client Querying Support
Clients should display the delegated note as if it was published directly by the delegator (8e0d3d3e).
Relays should answer requests such as `["REQ", "", {"authors": ["A"]}]` by querying both the `pubkey` and delegation tags `[1]` value.
#### Relay & Client Support
Relays should answer requests such as `["REQ", "", {"authors": ["A"]}]` by querying both the `pubkey` and delegation tags `[1]` value.
Relays SHOULD allow the delegator (8e0d3d3e) to delete the events published by the delegatee (477318cf).

54
27.md Normal file
View File

@ -0,0 +1,54 @@
NIP-27
======
Text Note References
--------------------
`draft` `optional` `author:arthurfranca` `author:hodlbod` `author:fiatjaf`
This document standardizes the treatment given by clients of inline references of other events and profiles inside the `.content` of any event that has readable text in its `.content` (such as kinds 1 and 30023).
When creating an event, clients should include mentions to other profiles and to other events in the middle of the `.content` using [NIP-21](21.md) codes, such as `nostr:nprofile1qqsw3dy8cpu...6x2argwghx6egsqstvg`.
Including [NIP-10](10.md)-style tags (`["e", <hex-id>, <relay-url>, <marker>]`) for each reference is optional, clients should do it whenever they want the profile being mentioned to be notified of the mention, or when they want the referenced event to recognize their mention as a reply.
A reader client that receives an event with such `nostr:...` mentions in its `.content` can do any desired context augmentation (for example, linking to the profile or showing a preview of the mentioned event contents) it wants in the process. If turning such mentions into links, they could become internal links, [NIP-21](21.md) links or direct links to web clients that will handle these references.
---
## Example of a profile mention process
Suppose Bob is writing a note in a client that has search-and-autocomplete functionality for users that is triggered when they write the character `@`.
As Bob types `"hello @mat"` the client will prompt him to autocomplete with [mattn's profile](https://gateway.nostr.com/p/2c7cc62a697ea3a7826521f3fd34f0cb273693cbe5e9310f35449f43622a5cdc), showing a picture and name.
Bob presses "enter" and now he sees his typed note as `"hello @mattn"`, `@mattn` is highlighted, indicating that it is a mention. Internally, however, the event looks like this:
```json
{
"content": "hello nostr:nprofile1qqszclxx9f5haga8sfjjrulaxncvkfekj097t6f3pu65f86rvg49ehqj6f9dh",
"created_at": 1679790774,
"id": "f39e9b451a73d62abc5016cffdd294b1a904e2f34536a208874fe5e22bbd47cf",
"kind": 1,
"pubkey": "79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798",
"sig": "f8c8bab1b90cc3d2ae1ad999e6af8af449ad8bb4edf64807386493163e29162b5852a796a8f474d6b1001cddbaac0de4392838574f5366f03cc94cf5dfb43f4d",
"tags": [
[
"p",
"2c7cc62a697ea3a7826521f3fd34f0cb273693cbe5e9310f35449f43622a5cdc"
]
]
}
```
(Alternatively, the mention could have been a `nostr:npub1...` URL.)
After Bob publishes this event and Carol sees it, her client will initially display the `.content` as it is, but later it will parse the `.content` and see that there is a `nostr:` URL in there, decode it, extract the public key from it (and possibly relay hints), fetch that profile from its internal database or relays, then replace the full URL with the name `@mattn`, with a link to the internal page view for that profile.
## Verbose and probably unnecessary considerations
- The example above was very concrete, but it doesn't mean all clients have to implement the same flow. There could be clients that do not support autocomplete at all, so they just allow users to paste raw [NIP-19](19.md) codes into the body of text, then prefix these with `nostr:` before publishing the event.
- The flow for referencing other events is similar: a user could paste a `note1...` or `nevent1...` code and the client will turn that into a `nostr:note1...` or `nostr:nevent1...` URL. Then upon reading such references the client may show the referenced note in a preview box or something like that -- or nothing at all.
- Other display procedures can be employed: for example, if a client that is designed for dealing with only `kind:1` text notes sees, for example, a [`kind:30023`](23.md) `nostr:naddr1...` URL reference in the `.content`, it can, for example, decide to turn that into a link to some hardcoded webapp capable of displaying such events.
- Clients may give the user the option to include or not include tags for mentioned events or profiles. If someone wants to mention `mattn` without notifying them, but still have a nice augmentable/clickable link to their profile inside their note, they can instruct their client to _not_ create a `["p", ...]` tag for that specific mention.
- In the same way, if someone wants to reference another note but their reference is not meant to show up along other replies to that same note, their client can choose to not include a corresponding `["e", ...]` tag for any given `nostr:nevent1...` URL inside `.content`. Clients may decide to expose these advanced functionalities to users or be more opinionated about things.

17
28.md
View File

@ -9,7 +9,7 @@ Public Chat
This NIP defines new event kinds for public chat channels, channel messages, and basic client-side moderation.
It reserves five event kinds (40-44) for immediate use and five event kinds (45-49) for future use.
It reserves five event kinds (40-44) for immediate use:
- `40 - channel create`
- `41 - channel metadata`
@ -54,7 +54,7 @@ Clients SHOULD use [NIP-10](10.md) marked "e" tags to recommend a relay.
```json
{
"content": "{\"name\": \"Updated Demo Channel\", \"about\": \"Updating a test channel.\", \"picture\": \"https://placekitten.com/201/201\"}",
"tags": [["e", <channel_create_event_id> <relay-url>]],
"tags": [["e", <channel_create_event_id>, <relay-url>]],
...
}
```
@ -73,7 +73,7 @@ Root message:
```json
{
"content": <string>,
"tags": [["e", <kind_40_event_id> <relay-url> "root"]],
"tags": [["e", <kind_40_event_id>, <relay-url>, "root"]],
...
}
```
@ -84,8 +84,9 @@ Reply to another message:
{
"content": <string>,
"tags": [
["e", <kind_42_event_id> <relay-url> "reply"],
["p", <pubkey> <relay-url>],
["e", <kind_40_event_id>, <relay-url>, "root"],
["e", <kind_42_event_id>, <relay-url>, "reply"],
["p", <pubkey>, <relay-url>],
...
],
...
@ -138,12 +139,6 @@ For [NIP-10](10.md) relay recommendations, clients generally SHOULD use the rela
Clients MAY recommend any relay URL. For example, if a relay hosting the original kind 40 event for a channel goes offline, clients could instead fetch channel data from a backup relay, or a relay that clients trust more than the original relay.
Future extensibility
--------------------
We reserve event kinds 45-49 for other events related to chat, to potentially include new types of media (photo/video), moderation, or support of private or group messaging.
Motivation
----------
If we're solving censorship-resistant communication for social media, we may as well solve it also for Telegram-style messaging.

25
33.md
View File

@ -10,10 +10,14 @@ This NIP adds a new event range that allows for replacement of events that have
Implementation
--------------
The value of a tag is defined as the first parameter of a tag after the tag name.
A *parameterized replaceable event* is defined as an event with a kind `30000 <= n < 40000`.
Upon a parameterized replaceable event with a newer timestamp than the currently known latest
replaceable event with the same kind and first `d` tag value being received, the old event
SHOULD be discarded and replaced with the newer event.
replaceable event with the same kind, author and first `d` tag value being received, the old event
SHOULD be discarded, effectively replacing what gets returned when querying for
`author:kind:d-tag` tuples.
A missing or a `d` tag with no value should be interpreted equivalent to a `d` tag with the
value as an empty string. Events from the same author with any of the following `tags`
replace each other:
@ -24,6 +28,23 @@ replace each other:
* `"tags":[["d",""],["d","not empty"]]`: only first `d` tag is considered
* `"tags":[["d"],["d","some value"]]`: only first `d` tag is considered
* `"tags":[["e"]]`: same as no tags
* `"tags":[["d","","1"]]`: only the first value is considered (`""`)
Clients SHOULD NOT use `d` tags with multiple values and SHOULD include the `d` tag even if it has no value to allow querying using the `#d` filter.
Referencing and tagging
-----------------------
Normally (as per NIP-01, NIP-12) the `"p"` tag is used for referencing public keys and the
`"e"` tag for referencing event ids and the `note`, `npub`, `nprofile` or `nevent` are their
equivalents for event tags (i.e. an `nprofile` is generally translated into a tag
`["p", "<event hex id>", "<relay url>"]`).
To support linking to parameterized replaceable events, the `naddr` code is introduced on
NIP-19. It includes the public key of the event author and the `d` tag (and relays) such that
the referenced combination of public key and `d` tag can be found.
The equivalent in `tags` to the `naddr` code is the tag `"a"`, comprised of `["a", "<kind>:<pubkey>:<d-identifier>", "<relay url>"]`.
Client Behavior
---------------

66
39.md Normal file
View File

@ -0,0 +1,66 @@
NIP-39
======
External Identities in Profiles
-------------------------------
`draft` `optional` `author:pseudozach` `author:Semisol`
## Abstract
Nostr protocol users may have other online identities such as usernames, profile pages, keypairs etc. they control and they may want to include this data in their profile metadata so clients can parse, validate and display this information.
## `i` tag on a metadata event
A new optional `i` tag is introduced for `kind 0` metadata event contents in addition to name, about, picture fields as included in [NIP-01](https://github.com/nostr-protocol/nips/blob/master/01.md):
```json
{
"id": <id>,
"pubkey": <pubkey>,
...
"tags": [
["i", "github:semisol", "9721ce4ee4fceb91c9711ca2a6c9a5ab"],
["i", "twitter:semisol_public", "1619358434134196225"],
["i", "mastodon:bitcoinhackers.org/@semisol", "109775066355589974"]
["i", "telegram:1087295469", "nostrdirectory/770"]
]
}
```
An `i` tag will have two parameters, which are defined as the following:
1. `platform:identity`: This is the platform name (for example `github`) and the identity on that platform (for example `semisol`) joined together with `:`.
2. `proof`: String or object that points to the proof of owning this identity.
Clients SHOULD process any `i` tags with more than 2 values for future extensibility.
Identity provider names SHOULD only include `a-z`, `0-9` and the characters `._-/` and MUST NOT include `:`.
Identity names SHOULD be normalized if possible by replacing uppercase letters with lowercase letters, and if there are multiple aliases for an entity the primary one should be used.
## Claim types
### `github`
Identity: A GitHub username.
Proof: A GitHub Gist ID. This Gist should be created by `<identity>` with a single file that has the text `Verifying that I control the following Nostr public key: <npub encoded public key>`.
This can be located at `https://gist.github.com/<identity>/<proof>`.
### `twitter`
Identity: A Twitter username.
Proof: A Tweet ID. The tweet should be posted by `<identity>` and have the text `Verifying my account on nostr My Public Key: "<npub encoded public key>"`.
This can be located at `https://twitter.com/<identity>/status/<proof>`.
### `mastodon`
Identity: A Mastodon instance and username in the format `<instance>/@<username>`.
Proof: A Mastodon post ID. This post should be published by `<username>@<instance>` and have the text `Verifying that I control the following Nostr public key: "<npub encoded public key>"`.
This can be located at `https://<identity>/<proof>`.
### `telegram`
Identity: A Telegram user ID.
Proof: A string in the format `<ref>/<id>` which points to a message published in the public channel or group with name `<ref>` and message ID `<id>`. This message should be sent by user ID `<identity>` and have the text `Verifying that I control the following Nostr public key: "<npub encoded public key>"`.
This can be located at `https://t.me/<proof>`.

2
40.md
View File

@ -43,7 +43,7 @@ Clients SHOULD ignore events that have expired.
Relay Behavior
--------------
Relays MAY NOT delete an expired message immediately on expiration and MAY persist them indefinitely.
Relays MAY NOT delete expired messages immediately on expiration and MAY persist them indefinitely.
Relays SHOULD NOT send expired events to clients, even if they are stored.
Relays SHOULD drop any events that are published to them if they are expired.
An expiration timestamp does not affect storage of ephemeral events.

88
42.md Normal file
View File

@ -0,0 +1,88 @@
NIP-42
======
Authentication of clients to relays
-----------------------------------
`draft` `optional` `author:Semisol` `author:fiatjaf`
This NIP defines a way for clients to authenticate to relays by signing an ephemeral event.
## Motivation
A relay may want to require clients to authenticate to access restricted resources. For example,
- A relay may request payment or other forms of whitelisting to publish events -- this can naïvely be achieved by limiting publication
to events signed by the whitelisted key, but with this NIP they may choose to accept any events as long as they are published from an
authenticated user;
- A relay may limit access to `kind: 4` DMs to only the parties involved in the chat exchange, and for that it may require authentication
before clients can query for that kind.
- A relay may limit subscriptions of any kind to paying users or users whitelisted through any other means, and require authentication.
## Definitions
This NIP defines a new message, `AUTH`, which relays can send when they support authentication and clients can send to relays when they want
to authenticate. When sent by relays, the message is of the following form:
```
["AUTH", <challenge-string>]
```
And, when sent by clients, of the following form:
```
["AUTH", <signed-event-json>]
```
The signed event is an ephemeral event not meant to be published or queried, it must be of `kind: 22242` and it should have at least two tags,
one for the relay URL and one for the challenge string as received from the relay.
Relays MUST exclude `kind: 22242` events from being broadcasted to any client.
`created_at` should be the current time. Example:
```json
{
"id": "...",
"pubkey": "...",
"created_at": 1669695536,
"kind": 22242,
"tags": [
["relay", "wss://relay.example.com/"],
["challenge", "challengestringhere"]
],
"content": "",
"sig": "..."
}
```
## Protocol flow
At any moment the relay may send an `AUTH` message to the client containing a challenge. After receiving that the client may decide to
authenticate itself or not. The challenge is expected to be valid for the duration of the connection or until a next challenge is sent by
the relay.
The client may send an auth message right before performing an action for which it knows authentication will be required -- for example, right
before requesting `kind: 4` chat messages --, or it may do right on connection start or at some other moment it deems best. The authentication
is expected to last for the duration of the WebSocket connection.
Upon receiving a message from an unauthenticated user it can't fulfill without authentication, a relay may choose to notify the client. For
that it can use a `NOTICE` or `OK` message with a standard prefix `"restricted: "` that is readable both by humans and machines, for example:
```
["NOTICE", "restricted: we can't serve DMs to unauthenticated users, does your client implement NIP-42?"]
```
or it can return an `OK` message noting the reason an event was not written using the same prefix:
```
["OK", <event-id>, false, "restricted: we do not accept events from unauthenticated users, please sign up at https://example.com/"]
```
## Signed Event Verification
To verify `AUTH` messages, relays must ensure:
- that the `kind` is `22242`;
- that the event `created_at` is close (e.g. within ~10 minutes) of the current time;
- that the `"challenge"` tag matches the challenge sent before;
- that the `"relay"` tag matches the relay URL:
- URL normalization techniques can be applied. For most cases just checking if the domain name is correct should be enough.

39
45.md Normal file
View File

@ -0,0 +1,39 @@
NIP-45
======
Event Counts
--------------
`draft` `optional` `author:staab`
Relays may support the verb `COUNT`, which provides a mechanism for obtaining event counts.
## Motivation
Some queries a client may want to execute against connected relays are prohibitively expensive, for example, in order to retrieve follower counts for a given pubkey, a client must query all kind-3 events referring to a given pubkey only to count them. The result may be cached, either by a client or by a separate indexing server as an alternative, but both options erode the decentralization of the network by creating a second-layer protocol on top of Nostr.
## Filters and return values
This NIP defines the verb `COUNT`, which accepts a subscription id and filters as specified in [NIP 01](01.md) for the verb `REQ`. Multiple filters are OR'd together and aggregated into a single count result.
```
["COUNT", <subscription_id>, <filters JSON>...]
```
Counts are returned using a `COUNT` response in the form `{"count": <integer>}`. Relays may use probabilistic counts to reduce compute requirements.
```
["COUNT", <subscription_id>, {"count": <integer>}]
```
Examples:
```
# Followers count
["COUNT", <subscription_id>, {"kinds": [3], "#p": [<pubkey>]}]
["COUNT", <subscription_id>, {"count": 238}]
# Count posts and reactions
["COUNT", <subscription_id>, {"kinds": [1, 7], "authors": [<pubkey>]}]
["COUNT", <subscription_id>, {"count": 5}]
```

162
46.md Normal file
View File

@ -0,0 +1,162 @@
NIP-46
======
Nostr Connect
------------------------
`draft` `optional` `author:tiero` `author:giowe` `author:vforvalerio87`
## Rationale
Private keys should be exposed to as few systems - apps, operating systems, devices - as possible as each system adds to the attack surface.
Entering private keys can also be annoying and requires exposing them to even more systems such as the operating system's clipboard that might be monitored by malicious apps.
## Terms
* **App**: Nostr app on any platform that *requires* to act on behalf of a nostr account.
* **Signer**: Nostr app that holds the private key of a nostr account and *can sign* on its behalf.
## `TL;DR`
**App** and **Signer** sends ephemeral encrypted messages to each other using kind `24133`, using a relay of choice.
App prompts the Signer to do things such as fetching the public key or signing events.
The `content` field must be an encrypted JSONRPC-ish **request** or **response**.
## Signer Protocol
### Messages
#### Request
```json
{
"id": <random_string>,
"method": <one_of_the_methods>,
"params": [<anything>, <else>]
}
```
#### Response
```json
{
"id": <request_id>,
"result": <anything>,
"error": <reason>
}
```
### Methods
#### Mandatory
These are mandatory methods the remote signer app MUST implement:
- **describe**
- params []
- result `["describe", "get_public_key", "sign_event", "connect", "disconnect", "delegate", ...]`
- **get_public_key**
- params []
- result `pubkey`
- **sign_event**
- params [`event`]
- result `event_with_signature`
#### optional
- **connect**
- params [`pubkey`]
- **disconnect**
- params []
- **delegate**
- params [`delegatee`, `{ kind: number, since: number, until: number }`]
- result `{ from: string, to: string, cond: string, sig: string }`
- **get_relays**
- params []
- result `{ [url: string]: {read: boolean, write: boolean} }`
- **nip04_encrypt**
- params [`pubkey`, `plaintext`]
- result `nip4 ciphertext`
- **nip04_decrypt**
- params [`pubkey`, `nip4 ciphertext`]
- result [`plaintext`]
NOTICE: `pubkey` and `signature` are hex-encoded strings.
### Nostr Connect URI
**Signer** discovers **App** by scanning a QR code, clicking on a deep link or copy-pasting an URI.
The **App** generates a special URI with prefix `nostrconnect://` and base path the hex-encoded `pubkey` with the following querystring parameters **URL encoded**
- `relay` URL of the relay of choice where the **App** is connected and the **Signer** must send and listen for messages.
- `metadata` metadata JSON of the **App**
- `name` human-readable name of the **App**
- `url` (optional) URL of the website requesting the connection
- `description` (optional) description of the **App**
- `icons` (optional) array of URLs for icons of the **App**.
#### JavaScript
```js
const uri = `nostrconnect://<pubkey>?relay=${encodeURIComponent("wss://relay.damus.io")}&metadata=${encodeURIComponent(JSON.stringify({"name": "Example"}))}`
```
#### Example
```sh
nostrconnect://b889ff5b1513b641e2a139f661a661364979c5beee91842f8f0ef42ab558e9d4?relay=wss%3A%2F%2Frelay.damus.io&metadata=%7B%22name%22%3A%22Example%22%7D
```
## Flows
The `content` field contains encrypted message as specified by [NIP04](https://github.com/nostr-protocol/nips/blob/master/04.md). The `kind` chosen is `24133`.
### Connect
1. User clicks on **"Connect"** button on a website or scan it with a QR code
2. It will show an URI to open a "nostr connect" enabled **Signer**
3. In the URI there is a pubkey of the **App** ie. `nostrconnect://<pubkey>&relay=<relay>&metadata=<metadata>`
4. The **Signer** will send a message to ACK the `connect` request, along with his public key
### Disconnect (from App)
1. User clicks on **"Disconnect"** button on the **App**
2. The **App** will send a message to the **Signer** with a `disconnect` request
3. The **Signer** will send a message to ACK the `disconnect` request
### Disconnect (from Signer)
1. User clicks on **"Disconnect"** button on the **Signer**
2. The **Signer** will send a message to the **App** with a `disconnect` request
### Get Public Key
1. The **App** will send a message to the **Signer** with a `get_public_key` request
3. The **Signer** will send back a message with the public key as a response to the `get_public_key` request
### Sign Event
1. The **App** will send a message to the **Signer** with a `sign_event` request along with the **event** to be signed
2. The **Signer** will show a popup to the user to inspect the event and sign it
3. The **Signer** will send back a message with the event including the `id` and the schnorr `signature` as a response to the `sign_event` request
### Delegate
1. The **App** will send a message with metadata to the **Signer** with a `delegate` request along with the **conditions** query string and the **pubkey** of the **App** to be delegated.
2. The **Signer** will show a popup to the user to delegate the **App** to sign on his behalf
3. The **Signer** will send back a message with the signed [NIP-26 delegation token](https://github.com/nostr-protocol/nips/blob/master/26.md) or reject it

137
47.md Normal file
View File

@ -0,0 +1,137 @@
NIP-47
======
Nostr Wallet Connect
--------------------
`draft` `optional` `author:kiwiidb` `author:bumi` `author:semisol` `author:vitorpamplona`
## Rationale
This NIP describes a way for clients to access a remote Lightning wallet through a standardized protocol. Custodians may implement this, or the user may run a bridge that bridges their wallet/node and the Nostr Wallet Connect protocol.
## Terms
* **client**: Nostr app on any platform that wants to pay Lightning invoices.
* **user**: The person using the **client**, and want's to connect their wallet app to their **client**.
* **wallet service**: Nostr app that typically runs on an always-on computer (eg. in the cloud or on a Raspberry Pi). This app has access to the APIs of the wallets it serves.
## Theory of Operation
1. **Users** who which to use this NIP to send lightning payments to other nostr users must first acquire a special "connection" URI from their NIP-47 compliant wallet application. The wallet application may provide this URI using a QR screen, or a pasteable string, or some other means.
2. The **user** should then copy this URI into their **client(s)** by pasting, or scanning the QR, etc. The **client(s)** should save this URI and use it later whenever the **user** makes a payment. The **client** should then request an `info` (13194) event from the relay(s) specified in the URI. The **wallet service** will have sent that event to those relays earlier, and the relays will hold it as a replaceable event.
3. When the **user** initiates a payment their nostr **client** create a `pay_invoice` request, encrypts it using a token from the URI, and sends it (kind 23194) to the relay(s) specified in the connection URI. The **wallet service** will be listening on those relays and will decrypt the request and then contact the **user's** wallet application to send the payment. The **wallet service** will know how to talk to the wallet application because the connection URI specified relay(s) that have access to the wallet app API.
4. Once the payment is complete the **wallet service** will send an encrypted `response` (kind 23195) to the **user** over the relay(s) in the URI.
## Events
There are three event kinds:
- `NIP-47 info event`: 13194
- `NIP-47 request`: 23194
- `NIP-47 response`: 23195
The info event should be a replaceable event that is published by the **wallet service** on the relay to indicate which commands it supports. The content should be
a plaintext string with the supported commands, space-seperated, eg. `pay_invoice get_balance`. Only the `pay_invoice` command is described in this NIP, but other commands might be defined in different NIPs.
Both the request and response events SHOULD contain one `p` tag, containing the public key of the **wallet service** if this is a request, and the public key of the **user** if this is a response. The response event SHOULD contain an `e` tag with the id of the request event it is responding to.
The content of requests and responses is encrypted with [NIP04](https://github.com/nostr-protocol/nips/blob/master/04.md), and is a JSON-RPCish object with a semi-fixed structure:
Request:
```jsonc
{
"method": "pay_invoice", // method, string
"params": { // params, object
"invoice": "lnbc50n1..." // command-related data
}
}
```
Response:
```jsonc
{
"result_type": "pay_invoice", //indicates the structure of the result field
"error": { //object, non-null in case of error
"code": "UNAUTHORIZED", //string error code, see below
"message": "human readable error message"
},
"result": { // result, object. null in case of error.
"preimage": "0123456789abcdef..." // command-related data
}
}
```
The `result_type` field MUST contain the name of the method that this event is responding to.
The `error` field MUST contain a `message` field with a human readable error message and a `code` field with the error code if the command was not succesful.
If the command was succesful, the `error` field must be null.
### Error codes
- `RATE_LIMITED`: The client is sending commands too fast. It should retry in a few seconds.
- `NOT_IMPLEMENTED`: The command is not known or is intentionally not implemented.
- `INSUFFICIENT_BALANCE`: The wallet does not have enough funds to cover a fee reserve or the payment amount.
- `QUOTA_EXCEEDED`: The wallet has exceeded its spending quota.
- `RESTRICTED`: This public key is not allowed to do this operation.
- `UNAUTHORIZED`: This public key has no wallet connected.
- `INTERNAL`: An internal error.
- `OTHER`: Other error.
## Nostr Wallet Connect URI
**client** discovers **wallet service** by scanning a QR code, handling a deeplink or pasting in a URI.
The **wallet service** generates this connection URI with protocol `nostr+walletconnect:` and base path it's hex-encoded `pubkey` with the following query string parameters:
- `relay` Required. URL of the relay where the **wallet service** is connected and will be listening for events. May be more than one.
- `secret` Required. 32-byte randomly generated hex encoded string. The **client** MUST use this to sign events and encrypt payloads when communicating with the **wallet service**.
- Authorization does not require passing keys back and forth.
- The user can have different keys for different applications. Keys can be revoked and created at will and have arbitrary constraints (eg. budgets).
- The key is harder to leak since it is not shown to the user and backed up.
- It improves privacy because the user's main key would not be linked to their payments.
- `lud16` Recommended. A lightning address that clients can use to automatically setup the `lud16` field on the user's profile if they have none configured.
The **client** should then store this connection and use it when the user wants to perform actions like paying an invoice. Due to this NIP using ephemeral events, it is recommended to pick relays that do not close connections on inactivity to not drop events.
### Example connection string
```sh
nostr+walletconnect:b889ff5b1513b641e2a139f661a661364979c5beee91842f8f0ef42ab558e9d4?relay=wss%3A%2F%2Frelay.damus.io&secret=71a8c14c1407c113601079c4302dab36460f0ccd0ad506f1f2dc73b5100e4f3c
```
## Commands
### `pay_invoice`
Description: Requests payment of an invoice.
Request:
```jsonc
{
"method": "pay_invoice",
"params": {
"invoice": "lnbc50n1..." // bolt11 invoice
}
}
```
Response:
```jsonc
{
"result_type": "pay_invoice",
"result": {
"preimage": "0123456789abcdef..." // preimage of the payment
}
}
```
Errors:
- `PAYMENT_FAILED`: The payment failed. This may be due to a timeout, exhausting all routes, insufficient capacity or similar.
## Example pay invoice flow
0. The user scans the QR code generated by the **wallet service** with their **client** application, they follow a `nostr+walletconnect:` deeplink or configure the connection details manually.
1. **client** sends an event to the **wallet service** service with kind `23194`. The content is a `pay_invoice` request. The private key is the secret from the connection string above.
2. **wallet service** verifies that the author's key is authorized to perform the payment, decrypts the payload and sends the payment.
3. **wallet service** responds to the event by sending an event with kind `23195` and content being a response either containing an error message or a preimage.
## Using a dedicated relay
This NIP does not specify any requirements on the type of relays used. However, if the user is using a custodial service it might make sense to use a relay that is hosted by the custodial service. The relay may then enforce authentication to prevent metadata leaks. Not depending on a 3rd party relay would also improve reliability in this case.

49
50.md Normal file
View File

@ -0,0 +1,49 @@
NIP-50
======
Search Capability
-----------------
`draft` `optional` `author:brugeman` `author:mikedilger` `author:fiatjaf`
## Abstract
Many Nostr use cases require some form of general search feature, in addition to structured queries by tags or ids.
Specifics of the search algorithms will differ between event kinds, this NIP only describes a general
extensible framework for performing such queries.
## `search` filter field
A new `search` field is introduced for `REQ` messages from clients:
```json
{
...
"search": <string>
}
```
`search` field is a string describing a query in a human-readable form, i.e. "best nostr apps".
Relays SHOULD interpret the query to the best of their ability and return events that match it.
Relays SHOULD perform matching against `content` event field, and MAY perform
matching against other fields if that makes sense in the context of a specific kind.
A query string may contain `key:value` pairs (two words separated by colon), these are extensions, relays SHOULD ignore
extensions they don't support.
Clients may specify several search filters, i.e. `["REQ", "", { "search": "orange" }, { "kinds": [1, 2], "search": "purple" }]`. Clients may
include `kinds`, `ids` and other filter field to restrict the search results to particular event kinds.
Clients SHOULD use the supported_nips field to learn if a relay supports `search` filter. Clients MAY send `search`
filter queries to any relay, if they are prepared to filter out extraneous responses from relays that do not support this NIP.
Clients SHOULD query several relays supporting this NIP to compensate for potentially different
implementation details between relays.
Clients MAY verify that events returned by a relay match the specified query in a way that suits the
client's use case, and MAY stop querying relays that have low precision.
Relays SHOULD exclude spam from search results by default if they supports some form of spam filtering.
## Extensions
Relay MAY support these extensions:
- `include:spam` - turn off spam filtering, if it was enabled by default

112
51.md Normal file
View File

@ -0,0 +1,112 @@
NIP-51
======
Lists
-------------------------
`draft` `optional` `author:fiatjaf` `author:arcbtc` `author:monlovesmango` `author:eskema` `depends:33`
A "list" event is defined as having a list of public and/or private tags. Public tags will be listed in the event `tags`. Private tags will be encrypted in the event `content`. Encryption for private tags will use [NIP-04 - Encrypted Direct Message](04.md) encryption, using the list author's private and public key for the shared secret. A distinct event kind should be used for each list type created.
If a list type should only be defined once per user (like the 'Mute' list), the list type's events should follow the specification for [NIP-16 - Replaceable Events](16.md). These lists may be referred to as 'replaceable lists'.
Otherwise, the list type's events should follow the specification for [NIP-33 - Parameterized Replaceable Events](33.md), where the list name will be used as the 'd' parameter. These lists may be referred to as 'parameterized replaceable lists'.
## Replaceable List Event Example
Lets say a user wants to create a 'Mute' list and has keys:
```
priv: fb505c65d4df950f5d28c9e4d285ee12ffaf315deef1fc24e3c7cd1e7e35f2b1
pub: b1a5c93edcc8d586566fde53a20bdb50049a97b15483cb763854e57016e0fa3d
```
The user wants to publicly include these users:
```json
["p", "3bf0c63fcb93463407af97a5e5ee64fa883d107ef9e558472c4eb9aaaefa459d"],
["p", "32e1827635450ebb3c5a7d12c1f8e7b2b514439ac10a67eef3d9fd9c5c68e245"]
```
and privately include these users (below is the JSON that would be encrypted and placed in the event content):
```json
[
["p", "9ec7a778167afb1d30c4833de9322da0c08ba71a69e1911d5578d3144bb56437"],
["p", "8c0da4862130283ff9e67d889df264177a508974e2feb96de139804ea66d6168"]
]
```
Then the user would create a 'Mute' list event like below:
```json
{
"kind": 10000,
"tags": [
["p", "3bf0c63fcb93463407af97a5e5ee64fa883d107ef9e558472c4eb9aaaefa459d"],
["p", "32e1827635450ebb3c5a7d12c1f8e7b2b514439ac10a67eef3d9fd9c5c68e245"],
],
"content": "VezuSvWak++ASjFMRqBPWS3mK5pZ0vRLL325iuIL4S+r8n9z+DuMau5vMElz1tGC/UqCDmbzE2kwplafaFo/FnIZMdEj4pdxgptyBV1ifZpH3TEF6OMjEtqbYRRqnxgIXsuOSXaerWgpi0pm+raHQPseoELQI/SZ1cvtFqEUCXdXpa5AYaSd+quEuthAEw7V1jP+5TDRCEC8jiLosBVhCtaPpLcrm8HydMYJ2XB6Ixs=?iv=/rtV49RFm0XyFEwG62Eo9A==",
...other fields
}
```
## Parameterized Replaceable List Event Example
Lets say a user wants to create a 'Categorized People' list of `nostr` people and has keys:
```
priv: fb505c65d4df950f5d28c9e4d285ee12ffaf315deef1fc24e3c7cd1e7e35f2b1
pub: b1a5c93edcc8d586566fde53a20bdb50049a97b15483cb763854e57016e0fa3d
```
The user wants to publicly include these users:
```json
["p", "3bf0c63fcb93463407af97a5e5ee64fa883d107ef9e558472c4eb9aaaefa459d"],
["p", "32e1827635450ebb3c5a7d12c1f8e7b2b514439ac10a67eef3d9fd9c5c68e245"]
```
and privately include these users (below is the JSON that would be encrypted and placed in the event content):
```json
[
["p", "9ec7a778167afb1d30c4833de9322da0c08ba71a69e1911d5578d3144bb56437"],
["p", "8c0da4862130283ff9e67d889df264177a508974e2feb96de139804ea66d6168"]
]
```
Then the user would create a 'Categorized People' list event like below:
```json
{
"kind": 30000,
"tags": [
["d", "nostr"],
["p", "3bf0c63fcb93463407af97a5e5ee64fa883d107ef9e558472c4eb9aaaefa459d"],
["p", "32e1827635450ebb3c5a7d12c1f8e7b2b514439ac10a67eef3d9fd9c5c68e245"],
],
"content": "VezuSvWak++ASjFMRqBPWS3mK5pZ0vRLL325iuIL4S+r8n9z+DuMau5vMElz1tGC/UqCDmbzE2kwplafaFo/FnIZMdEj4pdxgptyBV1ifZpH3TEF6OMjEtqbYRRqnxgIXsuOSXaerWgpi0pm+raHQPseoELQI/SZ1cvtFqEUCXdXpa5AYaSd+quEuthAEw7V1jP+5TDRCEC8jiLosBVhCtaPpLcrm8HydMYJ2XB6Ixs=?iv=/rtV49RFm0XyFEwG62Eo9A==",
...other fields
}
```
## List Event Kinds
| kind | list type |
| ------ | ----------------------- |
| 10000 | Mute |
| 10001 | Pin |
| 30000 | Categorized People |
| 30001 | Categorized Bookmarks |
### Mute List
An event with kind `10000` is defined as a replaceable list event for listing content a user wants to mute. Any standardized tag can be included in a Mute List.
### Pin List
An event with kind `10001` is defined as a replaceable list event for listing content a user wants to pin. Any standardized tag can be included in a Pin List.
### Categorized People List
An event with kind `30000` is defined as a parameterized replaceable list event for categorizing people. The 'd' parameter for this event holds the category name of the list. The tags included in these lists MUST follow the format of kind 3 events as defined in [NIP-02 - Contact List and Petnames](02.md).
### Categorized Bookmarks List
An event with kind `30001` is defined as a parameterized replaceable list event for categorizing bookmarks. The 'd' parameter for this event holds the category name of the list. Any standardized tag can be included in a Categorized Bookmarks List.

82
56.md Normal file
View File

@ -0,0 +1,82 @@
NIP-56
======
Reporting
---------
`draft` `optional` `author:jb55`
A report is a `kind 1984` note that is used to report other notes for spam,
illegal and explicit content.
The content MAY contain additional information submitted by the entity
reporting the content.
Tags
----
The report event MUST include a `p` tag referencing the pubkey of the user you
are reporting.
If reporting a note, an `e` tag MUST also be included referencing the note id.
A `report type` string MUST be included as the 3rd entry to the `e` or `p` tag
being reported, which consists of the following report types:
- `nudity` - depictions of nudity, porn, etc.
- `profanity` - profanity, hateful speech, etc.
- `illegal` - something which may be illegal in some jurisdiction
- `spam` - spam
- `impersonation` - someone pretending to be someone else
Some report tags only make sense for profile reports, such as `impersonation`
Example events
--------------
```json
{
"kind": 1984,
"tags": [
[ "p", <pubkey>, "nudity"]
],
"content": "",
...
}
{
"kind": 1984,
"tags": [
[ "e", <eventId>, "illegal"],
[ "p", <pubkey>]
],
"content": "He's insulting the king!",
...
}
{
"kind": 1984,
"tags": [
[ "p", <impersonator pubkey>, "impersonation"],
[ "p", <victim pubkey>]
],
"content": "Profile is imitating #[1]",
...
}
```
Client behavior
---------------
Clients can use reports from friends to make moderation decisions if they
choose to. For instance, if 3+ of your friends report a profile as explicit,
clients can have an option to automatically blur photos from said account.
Relay behavior
--------------
It is not recommended that relays perform automatic moderation using reports,
as they can be easily gamed. Admins could use reports from trusted moderators to
takedown illegal or explicit content if the relay does not allow such things.

183
57.md Normal file
View File

@ -0,0 +1,183 @@
NIP-57
======
Lightning Zaps
--------------
`draft` `optional` `author:jb55` `author:kieran`
This NIP defines two new event types for recording lightning payments between users. `9734` is a `zap request`, representing a payer's request to a recipient's lightning wallet for an invoice. `9735` is a `zap receipt`, representing the confirmation by the recipient's lightning wallet that the invoice issued in response to a zap request has been paid.
Having lightning receipts on nostr allows clients to display lightning payments from entities on the network. These can be used for fun or for spam deterrence.
## Protocol flow
1. Client calculates a recipient's lnurl pay request url from the `zap` tag on the event being zapped (see Appendix G), or by decoding their lud06 or lud16 field on their profile according to the [lnurl specifications](https://github.com/lnurl/luds). The client MUST send a GET request to this url and parse the response. If `allowsNostr` exists and it is `true`, and if `nostrPubkey` exists and is a valid BIP 340 public key in hex, the client should associate this information with the user, along with the response's `callback`, `minSendable`, and `maxSendable` values.
2. Clients may choose to display a lightning zap button on each post or on a user's profile. If the user's lnurl pay request endpoint supports nostr, the client SHOULD use this NIP to request a zap receipt rather than a normal lnurl invoice.
3. When a user (the "sender") indicates they want to send a zap to another user (the "recipient"), the client should create a `zap request` event as described in Appendix A of this NIP and sign it.
4. Instead of publishing the `zap request`, the `9734` event should instead be sent to the `callback` url received from the lnurl pay endpoint for the recipient using a GET request. See Appendix B for details and an example.
5. The recipient's lnurl server will receive this request and validate it. See Appendix C for details on how to properly configure an lnurl server to support zaps, and Appendix D for details on how to validate the `nostr` query parameter.
6. If the request is valid, the server should fetch a description hash invoice where the description is this note and this note only. No additional lnurl metadata is included in the description. This will be returned in the response according to [LUD06](https://github.com/lnurl/luds/blob/luds/06.md).
7. On receiving the invoice, the client MAY pay it or pass it to an app that can pay the invoice.
8. Once the invoice is paid, the recipient's lnurl server MUST generate a `zap receipt` as described in Appendix E, and publish it to the `relays` specified in the `zap request`.
9. Clients MAY fetch zap notes on posts and profiles, but MUST authorize their validity as described in Appendix F. If the zap request note contains a non-empty `content`, it may display a zap comment. Generally clients should show users the `zap request` note, and use the `zap note` to show "zap authorized by ..." but this is optional.
## Reference and examples
### Appendix A: Zap Request Event
A `zap request` is an event of kind `9734` that is _not_ published to relays, but is instead sent to a recipient's lnurl pay `callback` url. This event's `content` MAY be an optional message to send along with the payment. The event MUST include the following tags:
- `relays` is a list of relays the recipient's wallet should publish its `zap receipt` to. Note that relays should not be nested in an additional list, but should be included as shown in the example below.
- `amount` is the amount in _millisats_ the sender intends to pay, formatted as a string. This is recommended, but optional.
- `lnurl` is the lnurl pay url of the recipient, encoded using bech32 with the prefix `lnurl`. This is recommended, but optional.
- `p` is the hex-encoded pubkey of the recipient.
In addition, the event MAY include the following tags:
- `e` is an optional hex-encoded event id. Clients MUST include this if zapping an event rather than a person.
- `a` is an optional NIP-33 event coordinate that allows tipping parameterized replaceable events such as NIP-23 long-form notes.
Example:
```json
{
"kind": 9734,
"content": "Zap!",
"tags": [
["relays", "wss://nostr-pub.wellorder.com"],
["amount", "21000"],
["lnurl", "lnurl1dp68gurn8ghj7um5v93kketj9ehx2amn9uh8wetvdskkkmn0wahz7mrww4excup0dajx2mrv92x9xp"],
["p", "04c915daefee38317fa734444acee390a8269fe5810b2241e5e6dd343dfbecc9"],
["e", "9ae37aa68f48645127299e9453eb5d908a0cbb6058ff340d528ed4d37c8994fb"]
],
"pubkey": "97c70a44366a6535c145b333f973ea86dfdc2d7a99da618c40c64705ad98e322",
"created_at": 1679673265,
"id": "30efed56a035b2549fcaeec0bf2c1595f9a9b3bb4b1a38abaf8ee9041c4b7d93",
"sig": "f2cb581a84ed10e4dc84937bd98e27acac71ab057255f6aa8dfa561808c981fe8870f4a03c1e3666784d82a9c802d3704e174371aa13d63e2aeaf24ff5374d9d"
}
```
### Appendix B: Zap Request HTTP Request
A signed zap request event is not published, but is instead sent using a HTTP GET request to the recipient's `callback` url, which was provided by the recipient's lnurl pay endpoint. This request should have the following query parameters defined:
- `amount` is the amount in _millisats_ the sender intends to pay
- `nostr` is the `9734` zap request event, JSON encoded then URI encoded
- `lnurl` is the lnurl pay url of the recipient, encoded using bech32 with the prefix `lnurl`
This request should return a JSON response with a `pr` key, which is the invoice the sender must pay to finalize his zap. Here is an example flow:
```javascript
const senderPubkey // The sender's pubkey
const recipientPubkey = // The recipient's pubkey
const callback = // The callback received from the recipients lnurl pay endpoint
const lnurl = // The recipient's lightning address, encoded as a lnurl
const sats = 21
const amount = sats * 1000
const relays = ['wss://nostr-pub.wellorder.net']
const event = encodeURI(JSON.stringify(await signEvent({
kind: [9734],
content: "",
pubkey: senderPubkey,
created_at: Math.round(Date.now() / 1000),
tags: [
["relays", ...relays],
["amount", amount.toString()],
["lnurl", lnurl],
["p", recipientPubkey],
],
})))
const {pr: invoice} = await fetchJson(`${callback}?amount=${amount}&nostr=${event}&lnurl=${lnurl}`)
```
### Appendix C: LNURL Server Configuration
The lnurl server will need some additional pieces of information so that clients can know that zap invoices are supported:
1. Add a `nostrPubkey` to the lnurl-pay static endpoint `/.well-known/lnurlp/<user>`, where `nostrPubkey` is the nostr pubkey your server will use to sign `zap receipt` events. Clients will use this to validate zap receipts.
2. Add an `allowsNostr` field and set it to true.
### Appendix D: LNURL Server Zap Request Validation
When a client sends a zap request event to a server's lnurl-pay callback URL, there will be a `nostr` query parameter where the contents of the event are URI- and JSON-encoded. If present, the zap request event must be validated in the following ways:
1. It MUST have a valid nostr signature
2. It MUST have tags
3. It MUST have only one `p` tag
4. It MUST have 0 or 1 `e` tags
5. There should be a `relays` tag with the relays to send the `zap` note to.
6. If there is an `amount` tag, it MUST be equal to the `amount` query parameter.
7. If there is an `a` tag, it MUST be a valid NIP-33 event coordinate
The event MUST then be stored for use later, when the invoice is paid.
### Appendix E: Zap Receipt Event
A `zap receipt` is created by a lightning node when an invoice generated by a `zap request` is paid. Zap receipts are only created when the invoice description (committed to the description hash) contains a zap request note.
When receiving a payment, the following steps are executed:
1. Get the description for the invoice. This needs to be saved somewhere during the generation of the description hash invoice. It is saved automatically for you with CLN, which is the reference implementation used here.
2. Parse the bolt11 description as a JSON nostr event. This SHOULD be validated based on the requirements in Appendix D, either when it is received, or before the invoice is paid.
3. Create a nostr event of kind `9735` as described below, and publish it to the `relays` declared in the zap request.
The following should be true of the zap receipt event:
- The content SHOULD be empty.
- The `created_at` date SHOULD be set to the invoice `paid_at` date for idempotency.
- `tags` MUST include the `p` tag AND optional `e` tag from the zap request.
- The zap receipt MUST have a `bolt11` tag containing the description hash bolt11 invoice.
- The zap receipt MUST contain a `description` tag which is the JSON-encoded invoice description.
- `SHA256(description)` MUST match the description hash in the bolt11 invoice.
- The zap receipt MAY contain a `preimage` tag to match against the payment hash of the bolt11 invoice. This isn't really a payment proof, there is no real way to prove that the invoice is real or has been paid. You are trusting the author of the zap receipt for the legitimacy of the payment.
The zap receipt is not a proof of payment, all it proves is that some nostr user fetched an invoice. The existence of the zap receipt implies the invoice as paid, but it could be a lie given a rogue implementation.
A reference implementation for a zap-enabled lnurl server can be found [here](https://github.com/jb55/cln-nostr-zapper).
Example zap receipt:
```json
{
"id": "67b48a14fb66c60c8f9070bdeb37afdfcc3d08ad01989460448e4081eddda446",
"pubkey": "9630f464cca6a5147aa8a35f0bcdd3ce485324e732fd39e09233b1d848238f31",
"created_at": 1674164545,
"kind": 9735,
"tags": [
["p", "32e1827635450ebb3c5a7d12c1f8e7b2b514439ac10a67eef3d9fd9c5c68e245"],
["e", "3624762a1274dd9636e0c552b53086d70bc88c165bc4dc0f9e836a1eaf86c3b8"],
["bolt11", "lnbc10u1p3unwfusp5t9r3yymhpfqculx78u027lxspgxcr2n2987mx2j55nnfs95nxnzqpp5jmrh92pfld78spqs78v9euf2385t83uvpwk9ldrlvf6ch7tpascqhp5zvkrmemgth3tufcvflmzjzfvjt023nazlhljz2n9hattj4f8jq8qxqyjw5qcqpjrzjqtc4fc44feggv7065fqe5m4ytjarg3repr5j9el35xhmtfexc42yczarjuqqfzqqqqqqqqlgqqqqqqgq9q9qxpqysgq079nkq507a5tw7xgttmj4u990j7wfggtrasah5gd4ywfr2pjcn29383tphp4t48gquelz9z78p4cq7ml3nrrphw5w6eckhjwmhezhnqpy6gyf0"],
["description", "{\"pubkey\":\"32e1827635450ebb3c5a7d12c1f8e7b2b514439ac10a67eef3d9fd9c5c68e245\",\"content\":\"\",\"id\":\"d9cc14d50fcb8c27539aacf776882942c1a11ea4472f8cdec1dea82fab66279d\",\"created_at\":1674164539,\"sig\":\"77127f636577e9029276be060332ea565deaf89ff215a494ccff16ae3f757065e2bc59b2e8c113dd407917a010b3abd36c8d7ad84c0e3ab7dab3a0b0caa9835d\",\"kind\":9734,\"tags\":[[\"e\",\"3624762a1274dd9636e0c552b53086d70bc88c165bc4dc0f9e836a1eaf86c3b8\"],[\"p\",\"32e1827635450ebb3c5a7d12c1f8e7b2b514439ac10a67eef3d9fd9c5c68e245\"],[\"relays\",\"wss://relay.damus.io\",\"wss://nostr-relay.wlvs.space\",\"wss://nostr.fmt.wiz.biz\",\"wss://relay.nostr.bg\",\"wss://nostr.oxtr.dev\",\"wss://nostr.v0l.io\",\"wss://brb.io\",\"wss://nostr.bitcoiner.social\",\"ws://monad.jb55.com:8080\",\"wss://relay.snort.social\"]]}"],
["preimage", "5d006d2cf1e73c7148e7519a4c68adc81642ce0e25a432b2434c99f97344c15f"]
],
"content": "",
"sig": "b0a3c5c984ceb777ac455b2f659505df51585d5fd97a0ec1fdb5f3347d392080d4b420240434a3afd909207195dac1e2f7e3df26ba862a45afd8bfe101c2b1cc"
}
```
### Appendix F: Validating Zap Receipts
A client can retrieve `zap receipts` on events and pubkeys using a NIP-01 filter, for example `{"kinds": [9735], "#e": [...]}`. Zaps MUST be validated using the following steps:
- The `zap receipt` event's `pubkey` MUST be the same as the recipient's lnurl provider's `nostrPubkey` (retrieved in step 1 of the protocol flow).
- The `invoiceAmount` contained in the `bolt11` tag of the `zap receipt` MUST equal the `amount` tag of the `zap request` (if present).
- The `lnurl` tag of the `zap request` (if present) SHOULD equal the recipient's `lnurl`.
### Appendix G: `zap` tag on zapped event
When an event includes a `zap` tag, clients SHOULD calculate the lnurl pay request based on it's value instead of the profile's field. An optional third argument on the tag specifies the type of value, either `lud06` or `lud16`.
```json
{
"tags": [
[ "zap", "pablo@f7z.io", "lud16" ]
]
}
```
## Future Work
Zaps can be extended to be more private by encrypting zap request notes to the target user, but for simplicity it has been left out of this initial draft.

132
58.md Normal file
View File

@ -0,0 +1,132 @@
NIP-58
======
Badges
------
`draft` `optional` `author:cameri`
Three special events are used to define, award and display badges in
user profiles:
1. A "Badge Definition" event is defined as a parameterized replaceable event
with kind `30009` having a `d` tag with a value that uniquely identifies
the badge (e.g. `bravery`) published by the badge issuer. Badge definitions can
be updated.
2. A "Badge Award" event is a kind `8` event with a single `a` tag referencing
a "Define Badge" event and one or more `p` tags, one for each pubkey the
badge issuer wishes to award. The value for the `a` tag MUST follow the format
defined in [NIP-33](33.md). Awarded badges are immutable and non-transferrable.
3. A "Profile Badges" event is defined as a parameterized replaceable event
with kind `30008` with a `d` tag with the value `profile_badges`.
Profile badges contain an ordered list of pairs of `a` and `e` tags referencing a `Badge Definition` and a `Badge Award` for each badge to be displayed.
### Badge Definition event
The following tags MUST be present:
- `d` tag with the unique name of the badge.
The following tags MAY be present:
- A `name` tag with a short name for the badge.
- `image` tag whose value is the URL of a high-resolution image representing the badge. The second value optionally specifies the dimensions of the image as `width`x`height` in pixels. Badge recommended dimensions is 1024x1024 pixels.
- A `description` tag whose value MAY contain a textual representation of the
image, the meaning behind the badge, or the reason of it's issuance.
- One or more `thumb` tags whose first value is an URL pointing to a thumbnail version of the image referenced in the `image` tag. The second value optionally specifies the dimensions of the thumbnail as `width`x`height` in pixels.
### Badge Award event
The following tags MUST be present:
- An `a` tag referencing a kind `30009` Badge Definition event.
- One or more `p` tags referencing each pubkey awarded.
### Profile Badges Event
The number of badges a pubkey can be awarded is unbounded. The Profile Badge
event allows individual users to accept or reject awarded badges, as well
as choose the display order of badges on their profiles.
The following tags MUST be present:
- A `d` tag with the unique identifier `profile_badges`
The following tags MAY be present:
- Zero or more ordered consecutive pairs of `a` and `e` tags referencing a kind `30009` Badge Definition and kind `8` Badge Award, respectively. Clients SHOULD
ignore `a` without corresponding `e` tag and viceversa. Badge Awards referenced
by the `e` tags should contain the same `a` tag.
### Motivation
Users MAY be awarded badges (but not limited to) in recognition, in gratitude, for participation, or in appreciation of a certain goal, task or cause.
Users MAY choose to decorate their profiles with badges for fame, notoriety, recognition, support, etc., from badge issuers they deem reputable.
### Recommendations
Badge issuers MAY include some Proof of Work as per [NIP-13](13.md) when minting Badge Definitions or Badge Awards to embed them with a combined energy cost, arguably making them more special and valuable for users that wish to collect them.
Clients MAY whitelist badge issuers (pubkeys) for the purpose of ensuring they retain a valuable/special factor for their users.
Badge image recommended aspect ratio is 1:1 with a high-res size of 1024x1024 pixels.
Badge thumbnail image recommended dimensions are: 512x512 (xl), 256x256 (l), 64x64 (m), 32x32 (s) and 16x16 (xs).
Clients MAY choose to render less badges than those specified by users in the Profile Badges event or replace the badge image and thumbnails with ones that fits the theme of the client.
Clients SHOULD attempt to render the most appropriate badge thumbnail according to the number of badges chosen by the user and space available. Clients SHOULD attempt render the high-res version on user action (click, tap, hover).
### Example of a Badge Definition event
```json
{
"pubkey": "alice",
"kind": 30009,
"tags": [
["d", "bravery"],
["name", "Medal of Bravery"],
["description", "Awarded to users demonstrating bravery"],
["image", "https://nostr.academy/awards/bravery.png", "1024x1024"],
["thumb", "https://nostr.academy/awards/bravery_256x256.png", "256x256"],
],
...
}
```
### Example of Badge Award event
```json
{
"id": "<badge award event id>",
"kind": 8,
"pubkey": "alice",
"tags": [
["a", "30009:alice:bravery"],
["p", "bob", "wss://relay"],
["p", "charlie", "wss://relay"],
],
...
}
```
### Example of a Profile Badges event
Honorable Bob The Brave:
```json
{
"kind": 30008,
"pubkey": "bob",
"tags": [
["d", "profile_badges"],
["a", "30009:alice:bravery"],
["e", "<bravery badge award event id>", "wss://nostr.academy"],
["a", "30009:alice:honor"],
["e", "<honor badge award event id>", "wss://nostr.academy"],
],
...
}
```

76
65.md Normal file
View File

@ -0,0 +1,76 @@
NIP-65
======
Relay List Metadata
-------------------
`draft` `optional` `author:mikedilger`
A special replaceable event meaning "Relay List Metadata" is defined as an event with kind `10002` having a list of `r` tags, one for each relay the author uses to either read or write to.
The primary purpose of this relay list is to advertise to others, not for configuring one's client.
The content is not used and SHOULD be an empty string.
The `r` tags can have a second parameter as either `read` or `write`. If it is omitted, it means the author uses the relay for both purposes.
Clients SHOULD, as with all replaceable events, use only the most recent kind-10002 event they can find.
### The meaning of read and write
Write relays are for events that are intended for anybody (e.g. your followers). Read relays are for events that address a particular person.
Clients SHOULD write feed-related events created by their user to their user's write relays.
Clients SHOULD read feed-related events created by another from at least some of that other person's write relays. Explicitly, they SHOULD NOT expect them to be available at their user's read relays. It SHOULD NOT be presumed that the user's read relays coincide with the write relays of the people the user follows.
Clients SHOULD read events that tag their user from their user's read relays.
Clients SHOULD write events that tag a person to at least some of that person's read relays. Explicitly, they SHOULD NOT expect that person will pick them up from their user's write relays. It SHOULD NOT be presumed that the user's write relays coincide with the read relays of the person being tagged.
Clients SHOULD presume that if their user has a pubkey in their ContactList (kind 3) that it is because they wish to see that author's feed-related events. But clients MAY presume otherwise.
### Motivation
There is a common nostr use case where users wish to follow the content produced by other users. This is evidenced by the implicit meaning of the Contact List in [NIP-02](02.md)
Because users don't often share the same sets of relays, ad-hoc solutions have arisen to get that content, but these solutions negatively impact scalability and decentralization:
- Most people are sending their posts to the same most popular relays in order to be more widely seen
- Many people are pulling from a large number of relays (including many duplicate events) in order to get more data
- Events are being copied between relays, oftentimes to many different relays
### Purposes
The purpose of this NIP is to help clients find the events of the people they follow, to help tagged events get to the people tagged, and to help nostr scale better.
### Suggestions
It is suggested that people spread their kind `10002` events to many relays, but write their normal feed-related events to a much smaller number of relays (between 2 to 6 relays). It is suggested that clients offer a way for users to spread their kind `10002` events to many more relays than they normally post to.
Authors may post events outside of the feed that they wish their followers to follow by posting them to relays outside of those listed in their "Relay List Metadata". For example, an author may want to reply to someone without all of their followers watching.
It is suggested that relays allow any user to write their own kind `10002` event (optionally with AUTH to verify it is their own) even if they are not otherwise subscribed to the relay because
- finding where someone posts is rather important
- these events do not have content that needs management
- relays only need to store one replaceable event per pubkey to offer this service
### Why not in kind `0` Metadata
Even though this is user related metadata, it is a separate event from kind `0` in order to keep it small (as it should be widely spread) and to not have content that may require moderation by relay operators so that it is more acceptable to relays.
### Example
```json
{
"kind": 10002,
"tags": [
["r", "wss://alicerelay.example.com"],
["r", "wss://brando-relay.com"],
["r", "wss://expensive-relay.example2.com", "write"],
["r", "wss://nostr-relay.example.com", "read"],
],
"content": "",
...other fields
```

21
78.md Normal file
View File

@ -0,0 +1,21 @@
NIP-78
======
Arbitrary custom app data
-------------------------
`draft` `optional` `author:sandwich` `author:fiatjaf`
The goal of this NIP is to enable [remoteStorage](https://remotestorage.io/)-like capabilities for custom applications that do not care about interoperability.
Even though interoperability is great, some apps do not want or do not need interoperability, and it wouldn't make sense for them. Yet Nostr can still serve as a generalized data storage for these apps in a "bring your own database" way, for example: a user would open an app and somehow input their preferred relay for storage, which would then enable these apps to store application-specific data there.
## Nostr event
This NIP specifies the use of event kind `30078` (parameterized replaceable event) with a `d` tag containing some reference to the app name and context -- or any other arbitrary string. `content` and other `tags` can be anything or in any format.
## Some use cases
- User personal settings on Nostr clients (and other apps unrelated to Nostr)
- A way for client developers to propagate dynamic parameters to users without these having to update
- Personal private data generated by apps that have nothing to do with Nostr, but allow users to use Nostr relays as their personal database

51
94.md Normal file
View File

@ -0,0 +1,51 @@
NIP-94
======
File Metadata
-------------
`draft` `optional` `author:frbitten` `author:kieran` `author:lovvtide` `author:fiatjaf` `author:staab`
The purpose of this NIP is to allow an organization and classification of shared files. So that relays can filter and organize in any way that is of interest. With that, multiple types of filesharing clients can be created. NIP-94 support is not expected to be implemented by "social" clients that deal with kind:1 notes or by longform clients that deal with kind:30023 articles.
## Event format
This NIP specifies the use of the `1063` event type, having in `content` a description of the file content, and a list of tags described below:
* `url` the url to download the file
* `m` a string indicating the data type of the file. The MIME types format must be used (https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types)
* `"aes-256-gcm"` (optional) key and nonce for AES-GCM encryption with tagSize always 128bits
* `x` containing the SHA-256 hexencoded string of the file.
* `size` (optional) size of file in bytes
* `dim` (optional) size of file in pixels in the form `<width>x<height>`
* `magnet` (optional) URI to magnet file
* `i` (optional) torrent infohash
* `blurhash`(optional) the [blurhash](https://github.com/woltapp/blurhash) to show while the file is being loaded by the client
```json
{
"id": <32-bytes lowercase hex-encoded sha256 of the the serialized event data>,
"pubkey": <32-bytes lowercase hex-encoded public key of the event creator>,
"created_at": <unix timestamp in seconds>,
"kind": 1063,
"tags": [
["url",<string with URI of file>],
["aes-256-gcm",<key>, <iv>],
["m", <MIME type>],
["x",<Hash SHA-256>],
["size", <size of file in bytes>],
["dim", <size of file in pixels>],
["magnet",<magnet URI> ],
["i",<torrent infohash>],
["blurhash", <value>]
],
"content": <description>,
"sig": <64-bytes hex of the signature of the sha256 hash of the serialized event data, which is the same as the "id" field>
}
```
## Suggested use cases
* A relay for indexing shared files. For example, to promote torrents.
* A pinterest-like client where people can share their portfolio and inspire others.
* A simple way to distribute configurations and software updates.

169
README.md
View File

@ -1,6 +1,23 @@
# NIPs
NIPs stand for **Nostr Implementation Possibilities**. They exist to document what MUST, what SHOULD and what MAY be implemented by [Nostr](https://github.com/fiatjaf/nostr)-compatible _relay_ and _client_ software.
NIPs stand for **Nostr Implementation Possibilities**.
They exist to document what may be implemented by [Nostr](https://github.com/nostr-protocol/nostr)-compatible _relay_ and _client_ software.
---
- [List](#list)
- [Event Kinds](#event-kinds)
- [Event Kind Ranges](#event-kind-ranges)
- [Message Types](#message-types)
- [Client to Relay](#client-to-relay)
- [Relay to Client](#relay-to-client)
- [Standardized Tags](#standardized-tags)
- [Criteria for acceptance of NIPs](#criteria-for-acceptance-of-nips)
- [License](#license)
---
## List
- [NIP-01: Basic protocol flow description](01.md)
- [NIP-02: Contact List and Petnames](02.md)
@ -9,68 +26,150 @@ NIPs stand for **Nostr Implementation Possibilities**. They exist to document wh
- [NIP-05: Mapping Nostr keys to DNS-based internet identifiers](05.md)
- [NIP-06: Basic key derivation from mnemonic seed phrase](06.md)
- [NIP-07: `window.nostr` capability for web browsers](07.md)
- [NIP-08: Handling Mentions](08.md)
- [NIP-08: Handling Mentions](08.md) --- **unrecommended**: deprecated in favor of [NIP-27](27.md)
- [NIP-09: Event Deletion](09.md)
- [NIP-10: Conventions for clients' use of `e` and `p` tags in text events.](10.md)
- [NIP-10: Conventions for clients' use of `e` and `p` tags in text events](10.md)
- [NIP-11: Relay Information Document](11.md)
- [NIP-12: Generic Tag Queries](12.md)
- [NIP-13: Proof of Work](13.md)
- [NIP-14: Subject tag in text events.](14.md)
- [NIP-15: End of Stored Events Notice](15.md)
- [NIP-15: Nostr Marketplace (for resilient marketplaces)](15.md)
- [NIP-16: Event Treatment](16.md)
- [NIP-18: Reposts](18.md)
- [NIP-19: bech32-encoded entities](19.md)
- [NIP-20: Command Results](20.md)
- [NIP-22: Event created_at Limits](22.md)
- [NIP-21: `nostr:` URL scheme](21.md)
- [NIP-22: Event `created_at` Limits](22.md)
- [NIP-23: Long-form Content](23.md)
- [NIP-25: Reactions](25.md)
- [NIP-26: Delegated Event Signing](26.md)
- [NIP-27: Text Note References](27.md)
- [NIP-28: Public Chat](28.md)
- [NIP-33: Parameterized Replaceable Events](33.md)
- [NIP-36: Sensitive Content](36.md)
- [NIP-39: External Identities in Profiles](39.md)
- [NIP-40: Expiration Timestamp](40.md)
- [NIP-42: Authentication of clients to relays](42.md)
- [NIP-45: Counting results](45.md)
- [NIP-46: Nostr Connect](46.md)
- [NIP-47: Wallet Connect](47.md)
- [NIP-50: Keywords filter](50.md)
- [NIP-51: Lists](51.md)
- [NIP-56: Reporting](56.md)
- [NIP-57: Lightning Zaps](57.md)
- [NIP-58: Badges](58.md)
- [NIP-65: Relay List Metadata](65.md)
- [NIP-78: Application-specific data](78.md)
- [NIP-94: File Metadata](94.md)
## Event Kinds
| kind | description | NIP |
|-------------|-----------------------------|------------------------|
| 0 | Metadata | [1](01.md), [5](05.md) |
| 1 | Text | [1](01.md) |
| 2 | Recommend Relay | [1](01.md) |
| 3 | Contacts | [2](02.md) |
| 4 | Encrypted Direct Messages | [4](04.md) |
| 5 | Event Deletion | [9](09.md) |
| 6 | Repost | [18](18.md) |
| 7 | Reaction | [25](25.md) |
| 40 | Channel Creation | [28](28.md) |
| 41 | Channel Metadata | [28](28.md) |
| 42 | Channel Message | [28](28.md) |
| 43 | Channel Hide Message | [28](28.md) |
| 44 | Channel Mute User | [28](28.md) |
| 45-49 | Public Chat Reserved | [28](28.md) |
| 10000-19999 | Replaceable Events Reserved | [16](16.md) |
| 20000-29999 | Ephemeral Events Reserved | [16](16.md) |
| kind | description | NIP |
| ------- | -------------------------- | ----------- |
| `0` | Metadata | [1](01.md) |
| `1` | Short Text Note | [1](01.md) |
| `2` | Recommend Relay | [1](01.md) |
| `3` | Contacts | [2](02.md) |
| `4` | Encrypted Direct Messages | [4](04.md) |
| `5` | Event Deletion | [9](09.md) |
| `6` | Reposts | [18](18.md) |
| `7` | Reaction | [25](25.md) |
| `8` | Badge Award | [58](58.md) |
| `40` | Channel Creation | [28](28.md) |
| `41` | Channel Metadata | [28](28.md) |
| `42` | Channel Message | [28](28.md) |
| `43` | Channel Hide Message | [28](28.md) |
| `44` | Channel Mute User | [28](28.md) |
| `1063` | File Metadata | [94](94.md) |
| `1984` | Reporting | [56](56.md) |
| `9734` | Zap Request | [57](57.md) |
| `9735` | Zap | [57](57.md) |
| `10000` | Mute List | [51](51.md) |
| `10001` | Pin List | [51](51.md) |
| `10002` | Relay List Metadata | [65](65.md) |
| `13194` | Wallet Info | [47](47.md) |
| `22242` | Client Authentication | [42](42.md) |
| `23194` | Wallet Request | [47](47.md) |
| `23195` | Wallet Response | [47](47.md) |
| `24133` | Nostr Connect | [46](46.md) |
| `30000` | Categorized People List | [51](51.md) |
| `30001` | Categorized Bookmark List | [51](51.md) |
| `30008` | Profile Badges | [58](58.md) |
| `30009` | Badge Definition | [58](58.md) |
| `30017` | Create or update a stall | [15](15.md) |
| `30018` | Create or update a product | [15](15.md) |
| `30023` | Long-form Content | [23](23.md) |
| `30078` | Application-specific Data | [78](78.md) |
### Event Kind Ranges
| range | description | NIP |
| ---------------- | -------------------------------- | ----------- |
| `1000`--`9999` | Regular Events | [16](16.md) |
| `10000`--`19999` | Replaceable Events | [16](16.md) |
| `20000`--`29999` | Ephemeral Events | [16](16.md) |
| `30000`--`39999` | Parameterized Replaceable Events | [33](33.md) |
## Message types
### Client to Relay
| type | description | NIP |
|-------|-----------------------------------------------------|------------|
| EVENT | used to publish events | [1](01.md) |
| REQ | used to request events and subscribe to new updates | [1](01.md) |
| CLOSE | used to stop previous subscriptions | [1](01.md) |
| type | description | NIP |
| ------- | --------------------------------------------------- | ----------- |
| `AUTH` | used to send authentication events | [42](42.md) |
| `CLOSE` | used to stop previous subscriptions | [1](01.md) |
| `COUNT` | used to request event counts | [45](45.md) |
| `EVENT` | used to publish events | [1](01.md) |
| `REQ` | used to request events and subscribe to new updates | [1](01.md) |
### Relay to Client
| type | description | NIP |
|--------|---------------------------------------------------------|-------------|
| EVENT | used to send events requested to clients | [1](01.md) |
| NOTICE | used to send human-readable messages to clients | [1](01.md) |
| EOSE | used to notify clients all stored events have been sent | [15](15.md) |
| OK | used to notify clients if an EVENT was successuful | [20](20.md) |
| type | description | NIP |
| -------- | ------------------------------------------------------- | ----------- |
| `AUTH` | used to send authentication challenges | [42](42.md) |
| `COUNT` | used to send requested event counts to clients | [45](45.md) |
| `EOSE` | used to notify clients all stored events have been sent | [1](01.md) |
| `EVENT` | used to send events requested to clients | [1](01.md) |
| `NOTICE` | used to send human-readable messages to clients | [1](01.md) |
| `OK` | used to notify clients if an EVENT was successful | [20](20.md) |
Please update these lists when proposing NIPs introducing new event kinds.
When experimenting with kinds, keep in mind the classification introduced by [NIP-16](16.md).
When experimenting with kinds, keep in mind the classification introduced by [NIP-16](16.md) and [NIP-33](33.md).
## Standardized Tags
| name | value | other parameters | NIP |
| ----------------- | ------------------------------------ | -------------------- | ------------------------ |
| `a` | coordinates to an event | relay URL | [33](33.md), [23](23.md) |
| `d` | identifier | -- | [33](33.md) |
| `e` | event id (hex) | relay URL, marker | [1](01.md), [10](10.md) |
| `g` | geohash | -- | [12](12.md) |
| `i` | identity | proof | [39](39.md) |
| `p` | pubkey (hex) | relay URL | [1](01.md) |
| `r` | a reference (URL, etc) | -- | [12](12.md) |
| `t` | hashtag | -- | [12](12.md) |
| `amount` | millisats | -- | [57](57.md) |
| `bolt11` | `bolt11` invoice | -- | [57](57.md) |
| `challenge` | challenge string | -- | [42](42.md) |
| `content-warning` | reason | -- | [36](36.md) |
| `delegation` | pubkey, conditions, delegation token | -- | [26](26.md) |
| `description` | badge description | -- | [58](58.md) |
| `description` | invoice description | -- | [57](57.md) |
| `expiration` | unix timestamp (string) | -- | [40](40.md) |
| `image` | image URL | dimensions in pixels | [23](23.md), [58](58.md) |
| `lnurl` | `bech32` encoded `lnurl` | -- | [57](57.md) |
| `name` | badge name | -- | [58](58.md) |
| `nonce` | random | -- | [13](13.md) |
| `preimage` | hash of `bolt11` invoice | -- | [57](57.md) |
| `published_at` | unix timestamp (string) | -- | [23](23.md) |
| `relay` | relay url | -- | [42](42.md) |
| `relays` | relay list | -- | [57](57.md) |
| `subject` | subject | -- | [14](14.md) |
| `summary` | article summary | -- | [23](23.md) |
| `thumb` | badge thumbnail | dimensions in pixels | [58](58.md) |
| `title` | article title | -- | [23](23.md) |
| `zap` | profile name | type of value | [57](57.md) |
## Criteria for acceptance of NIPs