This commit is contained in:
pvn 2023-05-20 03:26:57 -04:00
parent 65c7077cce
commit f5fa34d6fe
137 changed files with 62725 additions and 0 deletions

409
ext/secp256k1/.cirrus.yml Normal file
View File

@ -0,0 +1,409 @@
env:
### cirrus config
CIRRUS_CLONE_DEPTH: 1
### compiler options
HOST:
WRAPPER_CMD:
# Specific warnings can be disabled with -Wno-error=foo.
# -pedantic-errors is not equivalent to -Werror=pedantic and thus not implied by -Werror according to the GCC manual.
WERROR_CFLAGS: -Werror -pedantic-errors
MAKEFLAGS: -j4
BUILD: check
### secp256k1 config
ECMULTWINDOW: auto
ECMULTGENPRECISION: auto
ASM: no
WIDEMUL: auto
WITH_VALGRIND: yes
EXTRAFLAGS:
### secp256k1 modules
EXPERIMENTAL: no
ECDH: no
RECOVERY: no
SCHNORRSIG: no
### test options
SECP256K1_TEST_ITERS:
BENCH: yes
SECP256K1_BENCH_ITERS: 2
CTIMETESTS: yes
# Compile and run the tests
EXAMPLES: yes
# https://cirrus-ci.org/pricing/#compute-credits
credits_snippet: &CREDITS
# Don't use any credits for now.
use_compute_credits: false
cat_logs_snippet: &CAT_LOGS
always:
cat_tests_log_script:
- cat tests.log || true
cat_noverify_tests_log_script:
- cat noverify_tests.log || true
cat_exhaustive_tests_log_script:
- cat exhaustive_tests.log || true
cat_ctime_tests_log_script:
- cat ctime_tests.log || true
cat_bench_log_script:
- cat bench.log || true
cat_config_log_script:
- cat config.log || true
cat_test_env_script:
- cat test_env.log || true
cat_ci_env_script:
- env
merge_base_script_snippet: &MERGE_BASE
merge_base_script:
- if [ "$CIRRUS_PR" = "" ]; then exit 0; fi
- git fetch --depth=1 $CIRRUS_REPO_CLONE_URL "pull/${CIRRUS_PR}/merge"
- git checkout FETCH_HEAD # Use merged changes to detect silent merge conflicts
linux_container_snippet: &LINUX_CONTAINER
container:
dockerfile: ci/linux-debian.Dockerfile
# Reduce number of CPUs to be able to do more builds in parallel.
cpu: 1
# Gives us more CPUs for free if they're available.
greedy: true
# More than enough for our scripts.
memory: 1G
task:
name: "x86_64: Linux (Debian stable)"
<< : *LINUX_CONTAINER
matrix: &ENV_MATRIX
- env: {WIDEMUL: int64, RECOVERY: yes}
- env: {WIDEMUL: int64, ECDH: yes, SCHNORRSIG: yes}
- env: {WIDEMUL: int128}
- env: {WIDEMUL: int128_struct}
- env: {WIDEMUL: int128, RECOVERY: yes, SCHNORRSIG: yes}
- env: {WIDEMUL: int128, ECDH: yes, SCHNORRSIG: yes}
- env: {WIDEMUL: int128, ASM: x86_64}
- env: { RECOVERY: yes, SCHNORRSIG: yes}
- env: {CTIMETESTS: no, RECOVERY: yes, ECDH: yes, SCHNORRSIG: yes, CPPFLAGS: -DVERIFY}
- env: {BUILD: distcheck, WITH_VALGRIND: no, CTIMETESTS: no, BENCH: no}
- env: {CPPFLAGS: -DDETERMINISTIC}
- env: {CFLAGS: -O0, CTIMETESTS: no}
- env: { ECMULTGENPRECISION: 2, ECMULTWINDOW: 2 }
- env: { ECMULTGENPRECISION: 8, ECMULTWINDOW: 4 }
matrix:
- env:
CC: gcc
- env:
CC: clang
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "i686: Linux (Debian stable)"
<< : *LINUX_CONTAINER
env:
HOST: i686-linux-gnu
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
matrix:
- env:
CC: i686-linux-gnu-gcc
- env:
CC: clang --target=i686-pc-linux-gnu -isystem /usr/i686-linux-gnu/include
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "arm64: macOS Ventura"
macos_instance:
image: ghcr.io/cirruslabs/macos-ventura-base:latest
env:
HOMEBREW_NO_AUTO_UPDATE: 1
HOMEBREW_NO_INSTALL_CLEANUP: 1
# Cirrus gives us a fixed number of 4 virtual CPUs. Not that we even have that many jobs at the moment...
MAKEFLAGS: -j5
matrix:
<< : *ENV_MATRIX
env:
ASM: no
WITH_VALGRIND: no
CTIMETESTS: no
matrix:
- env:
CC: gcc
- env:
CC: clang
brew_script:
- brew install automake libtool gcc
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
<< : *CREDITS
task:
name: "s390x (big-endian): Linux (Debian stable, QEMU)"
<< : *LINUX_CONTAINER
env:
WRAPPER_CMD: qemu-s390x
SECP256K1_TEST_ITERS: 16
HOST: s390x-linux-gnu
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: no
<< : *MERGE_BASE
test_script:
# https://sourceware.org/bugzilla/show_bug.cgi?id=27008
- rm /etc/ld.so.cache
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "ARM32: Linux (Debian stable, QEMU)"
<< : *LINUX_CONTAINER
env:
WRAPPER_CMD: qemu-arm
SECP256K1_TEST_ITERS: 16
HOST: arm-linux-gnueabihf
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: no
matrix:
- env: {}
- env: {EXPERIMENTAL: yes, ASM: arm32}
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "ARM64: Linux (Debian stable, QEMU)"
<< : *LINUX_CONTAINER
env:
WRAPPER_CMD: qemu-aarch64
SECP256K1_TEST_ITERS: 16
HOST: aarch64-linux-gnu
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: no
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "ppc64le: Linux (Debian stable, QEMU)"
<< : *LINUX_CONTAINER
env:
WRAPPER_CMD: qemu-ppc64le
SECP256K1_TEST_ITERS: 16
HOST: powerpc64le-linux-gnu
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: no
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
<< : *LINUX_CONTAINER
env:
WRAPPER_CMD: wine
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: no
matrix:
- name: "x86_64 (mingw32-w64): Windows (Debian stable, Wine)"
env:
HOST: x86_64-w64-mingw32
- name: "i686 (mingw32-w64): Windows (Debian stable, Wine)"
env:
HOST: i686-w64-mingw32
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
<< : *LINUX_CONTAINER
env:
WRAPPER_CMD: wine
WERROR_CFLAGS: -WX
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
EXPERIMENTAL: yes
SCHNORRSIG: yes
CTIMETESTS: no
# Use a MinGW-w64 host to tell ./configure we're building for Windows.
# This will detect some MinGW-w64 tools but then make will need only
# the MSVC tools CC, AR and NM as specified below.
HOST: x86_64-w64-mingw32
CC: /opt/msvc/bin/x64/cl
AR: /opt/msvc/bin/x64/lib
NM: /opt/msvc/bin/x64/dumpbin -symbols -headers
# Set non-essential options that affect the CLI messages here.
# (They depend on the user's taste, so we don't want to set them automatically in configure.ac.)
CFLAGS: -nologo -diagnostics:caret
LDFLAGS: -Xlinker -Xlinker -Xlinker -nologo
matrix:
- name: "x86_64 (MSVC): Windows (Debian stable, Wine)"
- name: "x86_64 (MSVC): Windows (Debian stable, Wine, int128_struct)"
env:
WIDEMUL: int128_struct
- name: "x86_64 (MSVC): Windows (Debian stable, Wine, int128_struct with __(u)mulh)"
env:
WIDEMUL: int128_struct
CPPFLAGS: -DSECP256K1_MSVC_MULH_TEST_OVERRIDE
- name: "i686 (MSVC): Windows (Debian stable, Wine)"
env:
HOST: i686-w64-mingw32
CC: /opt/msvc/bin/x86/cl
AR: /opt/msvc/bin/x86/lib
NM: /opt/msvc/bin/x86/dumpbin -symbols -headers
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
# Sanitizers
task:
<< : *LINUX_CONTAINER
env:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: no
matrix:
- name: "Valgrind (memcheck)"
container:
cpu: 2
env:
# The `--error-exitcode` is required to make the test fail if valgrind found errors, otherwise it'll return 0 (https://www.valgrind.org/docs/manual/manual-core.html)
WRAPPER_CMD: "valgrind --error-exitcode=42"
SECP256K1_TEST_ITERS: 2
- name: "UBSan, ASan, LSan"
container:
memory: 2G
env:
CFLAGS: "-fsanitize=undefined,address -g"
UBSAN_OPTIONS: "print_stacktrace=1:halt_on_error=1"
ASAN_OPTIONS: "strict_string_checks=1:detect_stack_use_after_return=1:detect_leaks=1"
LSAN_OPTIONS: "use_unaligned=1"
SECP256K1_TEST_ITERS: 32
# Try to cover many configurations with just a tiny matrix.
matrix:
- env:
ASM: auto
- env:
ASM: no
ECMULTGENPRECISION: 2
ECMULTWINDOW: 2
matrix:
- env:
CC: clang
- env:
HOST: i686-linux-gnu
CC: i686-linux-gnu-gcc
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
# Memory sanitizers
task:
<< : *LINUX_CONTAINER
name: "MSan"
env:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: yes
CC: clang
SECP256K1_TEST_ITERS: 32
ASM: no
WITH_VALGRIND: no
container:
memory: 2G
matrix:
- env:
CFLAGS: "-fsanitize=memory -g"
- env:
ECMULTGENPRECISION: 2
ECMULTWINDOW: 2
CFLAGS: "-fsanitize=memory -g -O3"
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "C++ -fpermissive (entire project)"
<< : *LINUX_CONTAINER
env:
CC: g++
CFLAGS: -fpermissive -g
CPPFLAGS: -DSECP256K1_CPLUSPLUS_TEST_OVERRIDE
WERROR_CFLAGS:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "C++ (public headers)"
<< : *LINUX_CONTAINER
test_script:
- g++ -Werror include/*.h
- clang -Werror -x c++-header include/*.h
- /opt/msvc/bin/x64/cl.exe -c -WX -TP include/*.h
task:
name: "sage prover"
<< : *LINUX_CONTAINER
test_script:
- cd sage
- sage prove_group_implementations.sage
task:
name: "x86_64: Windows (VS 2022)"
windows_container:
image: cirrusci/windowsservercore:visualstudio2022
cpu: 4
memory: 3840MB
env:
PATH: '%CIRRUS_WORKING_DIR%\build\src\RelWithDebInfo;%PATH%'
x64_NATIVE_TOOLS: '"C:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Auxiliary\Build\vcvars64.bat"'
# Ignore MSBuild warning MSB8029.
# See: https://learn.microsoft.com/en-us/visualstudio/msbuild/errors/msb8029?view=vs-2022
IgnoreWarnIntDirInTempDetected: 'true'
merge_script:
- PowerShell -NoLogo -Command if ($env:CIRRUS_PR -ne $null) { git fetch $env:CIRRUS_REPO_CLONE_URL pull/$env:CIRRUS_PR/merge; git reset --hard FETCH_HEAD; }
configure_script:
- '%x64_NATIVE_TOOLS%'
- cmake -E env CFLAGS="/WX" cmake -G "Visual Studio 17 2022" -A x64 -S . -B build -DSECP256K1_ENABLE_MODULE_RECOVERY=ON -DSECP256K1_BUILD_EXAMPLES=ON
build_script:
- '%x64_NATIVE_TOOLS%'
- cmake --build build --config RelWithDebInfo -- -property:UseMultiToolTask=true;CL_MPcount=5
check_script:
- '%x64_NATIVE_TOOLS%'
- ctest -C RelWithDebInfo --test-dir build -j 5
- build\src\RelWithDebInfo\bench_ecmult.exe
- build\src\RelWithDebInfo\bench_internal.exe
- build\src\RelWithDebInfo\bench.exe

2
ext/secp256k1/.gitattributes vendored Normal file
View File

@ -0,0 +1,2 @@
src/precomputed_ecmult.c linguist-generated
src/precomputed_ecmult_gen.c linguist-generated

65
ext/secp256k1/.gitignore vendored Normal file
View File

@ -0,0 +1,65 @@
bench
bench_ecmult
bench_internal
noverify_tests
tests
exhaustive_tests
precompute_ecmult_gen
precompute_ecmult
ctime_tests
ecdh_example
ecdsa_example
schnorr_example
*.exe
*.so
*.a
*.csv
*.log
*.trs
*.sage.py
Makefile
configure
.libs/
Makefile.in
aclocal.m4
autom4te.cache/
config.log
config.status
conftest*
*.tar.gz
*.la
libtool
.deps/
.dirstamp
*.lo
*.o
*~
coverage/
coverage.html
coverage.*.html
*.gcda
*.gcno
*.gcov
build-aux/ar-lib
build-aux/config.guess
build-aux/config.sub
build-aux/depcomp
build-aux/install-sh
build-aux/ltmain.sh
build-aux/m4/libtool.m4
build-aux/m4/lt~obsolete.m4
build-aux/m4/ltoptions.m4
build-aux/m4/ltsugar.m4
build-aux/m4/ltversion.m4
build-aux/missing
build-aux/compile
build-aux/test-driver
libsecp256k1.pc
### CMake
/CMakeUserPresets.json
# Default CMake build directory.
/build

View File

@ -0,0 +1,93 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.3.2] - 2023-05-13
We strongly recommend updating to 0.3.2 if you use or plan to use GCC >=13 to compile libsecp256k1. When in doubt, check the GCC version using `gcc -v`.
#### Security
- Module `ecdh`: Fix "constant-timeness" issue with GCC 13.1 (and potentially future versions of GCC) that could leave applications using libsecp256k1's ECDH module vulnerable to a timing side-channel attack. The fix avoids secret-dependent control flow during ECDH computations when libsecp256k1 is compiled with GCC 13.1.
#### Fixed
- Fixed an old bug that permitted compilers to potentially output bad assembly code on x86_64. In theory, it could lead to a crash or a read of unrelated memory, but this has never been observed on any compilers so far.
#### Changed
- Various improvements and changes to CMake builds. CMake builds remain experimental.
- Made API versioning consistent with GNU Autotools builds.
- Switched to `BUILD_SHARED_LIBS` variable for controlling whether to build a static or a shared library.
- Added `SECP256K1_INSTALL` variable for the controlling whether to install the build artefacts.
- Renamed asm build option `arm` to `arm32`. Use `--with-asm=arm32` instead of `--with-asm=arm` (GNU Autotools), and `-DSECP256K1_ASM=arm32` instead of `-DSECP256K1_ASM=arm` (CMake).
#### ABI Compatibility
The ABI is compatible with versions 0.3.0 and 0.3.1.
## [0.3.1] - 2023-04-10
We strongly recommend updating to 0.3.1 if you use or plan to use Clang >=14 to compile libsecp256k1, e.g., Xcode >=14 on macOS has Clang >=14. When in doubt, check the Clang version using `clang -v`.
#### Security
- Fix "constant-timeness" issue with Clang >=14 that could leave applications using libsecp256k1 vulnerable to a timing side-channel attack. The fix avoids secret-dependent control flow and secret-dependent memory accesses in conditional moves of memory objects when libsecp256k1 is compiled with Clang >=14.
#### Added
- Added tests against [Project Wycheproof's](https://github.com/google/wycheproof/) set of ECDSA test vectors (Bitcoin "low-S" variant), a fixed set of test cases designed to trigger various edge cases.
#### Changed
- Increased minimum required CMake version to 3.13. CMake builds remain experimental.
#### ABI Compatibility
The ABI is compatible with version 0.3.0.
## [0.3.0] - 2023-03-08
#### Added
- Added experimental support for CMake builds. Traditional GNU Autotools builds (`./configure` and `make`) remain fully supported.
- Usage examples: Added a recommended method for securely clearing sensitive data, e.g., secret keys, from memory.
- Tests: Added a new test binary `noverify_tests`. This binary runs the tests without some additional checks present in the ordinary `tests` binary and is thereby closer to production binaries. The `noverify_tests` binary is automatically run as part of the `make check` target.
#### Fixed
- Fixed declarations of API variables for MSVC (`__declspec(dllimport)`). This fixes MSVC builds of programs which link against a libsecp256k1 DLL dynamically and use API variables (and not only API functions). Unfortunately, the MSVC linker now will emit warning `LNK4217` when trying to link against libsecp256k1 statically. Pass `/ignore:4217` to the linker to suppress this warning.
#### Changed
- Forbade cloning or destroying `secp256k1_context_static`. Create a new context instead of cloning the static context. (If this change breaks your code, your code is probably wrong.)
- Forbade randomizing (copies of) `secp256k1_context_static`. Randomizing a copy of `secp256k1_context_static` did not have any effect and did not provide defense-in-depth protection against side-channel attacks. Create a new context if you want to benefit from randomization.
#### Removed
- Removed the configuration header `src/libsecp256k1-config.h`. We recommend passing flags to `./configure` or `cmake` to set configuration options (see `./configure --help` or `cmake -LH`). If you cannot or do not want to use one of the supported build systems, pass configuration flags such as `-DSECP256K1_ENABLE_MODULE_SCHNORRSIG` manually to the compiler (see the file `configure.ac` for supported flags).
#### ABI Compatibility
Due to changes in the API regarding `secp256k1_context_static` described above, the ABI is *not* compatible with previous versions.
## [0.2.0] - 2022-12-12
#### Added
- Added usage examples for common use cases in a new `examples/` directory.
- Added `secp256k1_selftest`, to be used in conjunction with `secp256k1_context_static`.
- Added support for 128-bit wide multiplication on MSVC for x86_64 and arm64, giving roughly a 20% speedup on those platforms.
#### Changed
- Enabled modules `schnorrsig`, `extrakeys` and `ecdh` by default in `./configure`.
- The `secp256k1_nonce_function_rfc6979` nonce function, used by default by `secp256k1_ecdsa_sign`, now reduces the message hash modulo the group order to match the specification. This only affects improper use of ECDSA signing API.
#### Deprecated
- Deprecated context flags `SECP256K1_CONTEXT_VERIFY` and `SECP256K1_CONTEXT_SIGN`. Use `SECP256K1_CONTEXT_NONE` instead.
- Renamed `secp256k1_context_no_precomp` to `secp256k1_context_static`.
- Module `schnorrsig`: renamed `secp256k1_schnorrsig_sign` to `secp256k1_schnorrsig_sign32`.
#### ABI Compatibility
Since this is the first release, we do not compare application binary interfaces.
However, there are earlier unreleased versions of libsecp256k1 that are *not* ABI compatible with this version.
## [0.1.0] - 2013-03-05 to 2021-12-25
This version was in fact never released.
The number was given by the build system since the introduction of autotools in Jan 2014 (ea0fe5a5bf0c04f9cc955b2966b614f5f378c6f6).
Therefore, this version number does not uniquely identify a set of source files.
[unreleased]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.2...HEAD
[0.3.2]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.1...v0.3.2
[0.3.1]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.0...v0.3.1
[0.3.0]: https://github.com/bitcoin-core/secp256k1/compare/v0.2.0...v0.3.0
[0.2.0]: https://github.com/bitcoin-core/secp256k1/compare/423b6d19d373f1224fd671a982584d7e7900bc93..v0.2.0
[0.1.0]: https://github.com/bitcoin-core/secp256k1/commit/423b6d19d373f1224fd671a982584d7e7900bc93

View File

@ -0,0 +1,333 @@
cmake_minimum_required(VERSION 3.13)
if(CMAKE_VERSION VERSION_GREATER_EQUAL 3.15)
# MSVC runtime library flags are selected by the CMAKE_MSVC_RUNTIME_LIBRARY abstraction.
cmake_policy(SET CMP0091 NEW)
# MSVC warning flags are not in CMAKE_<LANG>_FLAGS by default.
cmake_policy(SET CMP0092 NEW)
endif()
project(libsecp256k1
# The package (a.k.a. release) version is based on semantic versioning 2.0.0 of
# the API. All changes in experimental modules are treated as
# backwards-compatible and therefore at most increase the minor version.
VERSION 0.3.2
DESCRIPTION "Optimized C library for ECDSA signatures and secret/public key operations on curve secp256k1."
HOMEPAGE_URL "https://github.com/bitcoin-core/secp256k1"
LANGUAGES C
)
set_property(GLOBAL PROPERTY CTEST_TARGETS_ADDED 1)
if(CMAKE_VERSION VERSION_LESS 3.21)
get_directory_property(parent_directory PARENT_DIRECTORY)
if(parent_directory)
set(PROJECT_IS_TOP_LEVEL OFF CACHE INTERNAL "Emulates CMake 3.21+ behavior.")
set(${PROJECT_NAME}_IS_TOP_LEVEL OFF CACHE INTERNAL "Emulates CMake 3.21+ behavior.")
else()
set(PROJECT_IS_TOP_LEVEL ON CACHE INTERNAL "Emulates CMake 3.21+ behavior.")
set(${PROJECT_NAME}_IS_TOP_LEVEL ON CACHE INTERNAL "Emulates CMake 3.21+ behavior.")
endif()
unset(parent_directory)
endif()
# The library version is based on libtool versioning of the ABI. The set of
# rules for updating the version can be found here:
# https://www.gnu.org/software/libtool/manual/html_node/Updating-version-info.html
# All changes in experimental modules are treated as if they don't affect the
# interface and therefore only increase the revision.
set(${PROJECT_NAME}_LIB_VERSION_CURRENT 2)
set(${PROJECT_NAME}_LIB_VERSION_REVISION 2)
set(${PROJECT_NAME}_LIB_VERSION_AGE 0)
set(CMAKE_C_STANDARD 90)
set(CMAKE_C_EXTENSIONS OFF)
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
option(BUILD_SHARED_LIBS "Build shared libraries." OFF)
option(SECP256K1_DISABLE_SHARED "Disable shared library. Overrides BUILD_SHARED_LIBS." ON)
if(SECP256K1_DISABLE_SHARED)
set(BUILD_SHARED_LIBS OFF)
endif()
option(SECP256K1_INSTALL "Enable installation." ${PROJECT_IS_TOP_LEVEL})
option(SECP256K1_ENABLE_MODULE_ECDH "Enable ECDH module." ON)
if(SECP256K1_ENABLE_MODULE_ECDH)
add_compile_definitions(ENABLE_MODULE_ECDH=1)
endif()
option(SECP256K1_ENABLE_MODULE_RECOVERY "Enable ECDSA pubkey recovery module." OFF)
if(SECP256K1_ENABLE_MODULE_RECOVERY)
add_compile_definitions(ENABLE_MODULE_RECOVERY=1)
endif()
option(SECP256K1_ENABLE_MODULE_EXTRAKEYS "Enable extrakeys module." ON)
option(SECP256K1_ENABLE_MODULE_SCHNORRSIG "Enable schnorrsig module." ON)
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
set(SECP256K1_ENABLE_MODULE_EXTRAKEYS ON)
add_compile_definitions(ENABLE_MODULE_SCHNORRSIG=1)
endif()
if(SECP256K1_ENABLE_MODULE_EXTRAKEYS)
add_compile_definitions(ENABLE_MODULE_EXTRAKEYS=1)
endif()
option(SECP256K1_USE_EXTERNAL_DEFAULT_CALLBACKS "Enable external default callback functions." OFF)
if(SECP256K1_USE_EXTERNAL_DEFAULT_CALLBACKS)
add_compile_definitions(USE_EXTERNAL_DEFAULT_CALLBACKS=1)
endif()
set(SECP256K1_ECMULT_WINDOW_SIZE "AUTO" CACHE STRING "Window size for ecmult precomputation for verification, specified as integer in range [2..24]. \"AUTO\" is a reasonable setting for desktop machines (currently 15). [default=AUTO]")
set_property(CACHE SECP256K1_ECMULT_WINDOW_SIZE PROPERTY STRINGS "AUTO" 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)
include(CheckStringOptionValue)
check_string_option_value(SECP256K1_ECMULT_WINDOW_SIZE)
if(SECP256K1_ECMULT_WINDOW_SIZE STREQUAL "AUTO")
set(SECP256K1_ECMULT_WINDOW_SIZE 15)
endif()
add_compile_definitions(ECMULT_WINDOW_SIZE=${SECP256K1_ECMULT_WINDOW_SIZE})
set(SECP256K1_ECMULT_GEN_PREC_BITS "AUTO" CACHE STRING "Precision bits to tune the precomputed table size for signing, specified as integer 2, 4 or 8. \"AUTO\" is a reasonable setting for desktop machines (currently 4). [default=AUTO]")
set_property(CACHE SECP256K1_ECMULT_GEN_PREC_BITS PROPERTY STRINGS "AUTO" 2 4 8)
check_string_option_value(SECP256K1_ECMULT_GEN_PREC_BITS)
if(SECP256K1_ECMULT_GEN_PREC_BITS STREQUAL "AUTO")
set(SECP256K1_ECMULT_GEN_PREC_BITS 4)
endif()
add_compile_definitions(ECMULT_GEN_PREC_BITS=${SECP256K1_ECMULT_GEN_PREC_BITS})
set(SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY "OFF" CACHE STRING "Test-only override of the (autodetected by the C code) \"widemul\" setting. Legal values are: \"OFF\", \"int128_struct\", \"int128\" or \"int64\". [default=OFF]")
set_property(CACHE SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY PROPERTY STRINGS "OFF" "int128_struct" "int128" "int64")
check_string_option_value(SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
if(SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
string(TOUPPER "${SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY}" widemul_upper_value)
add_compile_definitions(USE_FORCE_WIDEMUL_${widemul_upper_value}=1)
endif()
mark_as_advanced(FORCE SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
set(SECP256K1_ASM "AUTO" CACHE STRING "Assembly optimizations to use: \"AUTO\", \"OFF\", \"x86_64\" or \"arm32\" (experimental). [default=AUTO]")
set_property(CACHE SECP256K1_ASM PROPERTY STRINGS "AUTO" "OFF" "x86_64" "arm32")
check_string_option_value(SECP256K1_ASM)
if(SECP256K1_ASM STREQUAL "arm32")
enable_language(ASM)
include(CheckArm32Assembly)
check_arm32_assembly()
if(HAVE_ARM32_ASM)
add_compile_definitions(USE_EXTERNAL_ASM=1)
else()
message(FATAL_ERROR "ARM32 assembly optimization requested but not available.")
endif()
elseif(SECP256K1_ASM)
include(CheckX86_64Assembly)
check_x86_64_assembly()
if(HAVE_X86_64_ASM)
set(SECP256K1_ASM "x86_64")
add_compile_definitions(USE_ASM_X86_64=1)
elseif(SECP256K1_ASM STREQUAL "AUTO")
set(SECP256K1_ASM "OFF")
else()
message(FATAL_ERROR "x86_64 assembly optimization requested but not available.")
endif()
endif()
option(SECP256K1_EXPERIMENTAL "Allow experimental configuration options." OFF)
if(NOT SECP256K1_EXPERIMENTAL)
if(SECP256K1_ASM STREQUAL "arm32")
message(FATAL_ERROR "ARM32 assembly optimization is experimental. Use -DSECP256K1_EXPERIMENTAL=ON to allow.")
endif()
endif()
set(SECP256K1_VALGRIND "AUTO" CACHE STRING "Build with extra checks for running inside Valgrind. [default=AUTO]")
set_property(CACHE SECP256K1_VALGRIND PROPERTY STRINGS "AUTO" "OFF" "ON")
check_string_option_value(SECP256K1_VALGRIND)
if(SECP256K1_VALGRIND)
find_package(Valgrind MODULE)
if(Valgrind_FOUND)
set(SECP256K1_VALGRIND ON)
include_directories(${Valgrind_INCLUDE_DIR})
add_compile_definitions(VALGRIND)
elseif(SECP256K1_VALGRIND STREQUAL "AUTO")
set(SECP256K1_VALGRIND OFF)
else()
message(FATAL_ERROR "Valgrind support requested but valgrind/memcheck.h header not available.")
endif()
endif()
option(SECP256K1_BUILD_BENCHMARK "Build benchmarks." OFF)
option(SECP256K1_BUILD_TESTS "Build tests." OFF)
option(SECP256K1_BUILD_EXHAUSTIVE_TESTS "Build exhaustive tests." OFF)
option(SECP256K1_BUILD_CTIME_TESTS "Build constant-time tests." ${SECP256K1_VALGRIND})
option(SECP256K1_BUILD_EXAMPLES "Build examples." OFF)
# Redefine configuration flags.
# We leave assertions on, because they are only used in the examples, and we want them always on there.
if(MSVC)
string(REGEX REPLACE "/DNDEBUG[ \t\r\n]*" "" CMAKE_C_FLAGS_RELWITHDEBINFO "${CMAKE_C_FLAGS_RELWITHDEBINFO}")
string(REGEX REPLACE "/DNDEBUG[ \t\r\n]*" "" CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE}")
string(REGEX REPLACE "/DNDEBUG[ \t\r\n]*" "" CMAKE_C_FLAGS_MINSIZEREL "${CMAKE_C_FLAGS_MINSIZEREL}")
else()
string(REGEX REPLACE "-DNDEBUG[ \t\r\n]*" "" CMAKE_C_FLAGS_RELWITHDEBINFO "${CMAKE_C_FLAGS_RELWITHDEBINFO}")
string(REGEX REPLACE "-DNDEBUG[ \t\r\n]*" "" CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE}")
string(REGEX REPLACE "-DNDEBUG[ \t\r\n]*" "" CMAKE_C_FLAGS_MINSIZEREL "${CMAKE_C_FLAGS_MINSIZEREL}")
# Prefer -O2 optimization level. (-O3 is CMake's default for Release for many compilers.)
string(REGEX REPLACE "-O3[ \t\r\n]*" "-O2" CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE}")
endif()
# Define custom "Coverage" build type.
set(CMAKE_C_FLAGS_COVERAGE "${CMAKE_C_FLAGS_RELWITHDEBINFO} -O0 -DCOVERAGE=1 --coverage" CACHE STRING
"Flags used by the C compiler during \"Coverage\" builds."
FORCE
)
set(CMAKE_EXE_LINKER_FLAGS_COVERAGE "${CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFO} --coverage" CACHE STRING
"Flags used for linking binaries during \"Coverage\" builds."
FORCE
)
set(CMAKE_SHARED_LINKER_FLAGS_COVERAGE "${CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFO} --coverage" CACHE STRING
"Flags used by the shared libraries linker during \"Coverage\" builds."
FORCE
)
mark_as_advanced(
CMAKE_C_FLAGS_COVERAGE
CMAKE_EXE_LINKER_FLAGS_COVERAGE
CMAKE_SHARED_LINKER_FLAGS_COVERAGE
)
get_property(is_multi_config GLOBAL PROPERTY GENERATOR_IS_MULTI_CONFIG)
set(default_build_type "RelWithDebInfo")
if(is_multi_config)
set(CMAKE_CONFIGURATION_TYPES "${default_build_type}" "Release" "Debug" "MinSizeRel" "Coverage" CACHE STRING
"Supported configuration types."
FORCE
)
else()
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY
STRINGS "${default_build_type}" "Release" "Debug" "MinSizeRel" "Coverage"
)
if(NOT CMAKE_BUILD_TYPE)
message(STATUS "Setting build type to \"${default_build_type}\" as none was specified")
set(CMAKE_BUILD_TYPE "${default_build_type}" CACHE STRING
"Choose the type of build."
FORCE
)
endif()
endif()
include(TryAppendCFlags)
if(MSVC)
# Keep the following commands ordered lexicographically.
try_append_c_flags(/W2) # Moderate warning level.
try_append_c_flags(/wd4146) # Disable warning C4146 "unary minus operator applied to unsigned type, result still unsigned".
else()
# Keep the following commands ordered lexicographically.
try_append_c_flags(-pedantic)
try_append_c_flags(-Wall) # GCC >= 2.95 and probably many other compilers.
try_append_c_flags(-Wcast-align) # GCC >= 2.95.
try_append_c_flags(-Wcast-align=strict) # GCC >= 8.0.
try_append_c_flags(-Wconditional-uninitialized) # Clang >= 3.0 only.
try_append_c_flags(-Wextra) # GCC >= 3.4, this is the newer name of -W, which we don't use because older GCCs will warn about unused functions.
try_append_c_flags(-Wnested-externs)
try_append_c_flags(-Wno-long-long) # GCC >= 3.0, -Wlong-long is implied by -pedantic.
try_append_c_flags(-Wno-overlength-strings) # GCC >= 4.2, -Woverlength-strings is implied by -pedantic.
try_append_c_flags(-Wno-unused-function) # GCC >= 3.0, -Wunused-function is implied by -Wall.
try_append_c_flags(-Wreserved-identifier) # Clang >= 13.0 only.
try_append_c_flags(-Wshadow)
try_append_c_flags(-Wstrict-prototypes)
try_append_c_flags(-Wundef)
endif()
set(CMAKE_C_VISIBILITY_PRESET hidden)
# Ask CTest to create a "check" target (e.g., make check) as alias for the "test" target.
# CTEST_TEST_TARGET_ALIAS is not documented but supposed to be user-facing.
# See: https://gitlab.kitware.com/cmake/cmake/-/commit/816c9d1aa1f2b42d40c81a991b68c96eb12b6d2
set(CTEST_TEST_TARGET_ALIAS check)
include(CTest)
# We do not use CTest's BUILD_TESTING because a single toggle for all tests is too coarse for our needs.
mark_as_advanced(BUILD_TESTING)
if(SECP256K1_BUILD_BENCHMARK OR SECP256K1_BUILD_TESTS OR SECP256K1_BUILD_EXHAUSTIVE_TESTS OR SECP256K1_BUILD_CTIME_TESTS OR SECP256K1_BUILD_EXAMPLES)
enable_testing()
endif()
add_subdirectory(src)
if(SECP256K1_BUILD_EXAMPLES)
add_subdirectory(examples)
endif()
message("\n")
message("secp256k1 configure summary")
message("===========================")
message("Build artifacts:")
if(BUILD_SHARED_LIBS)
set(library_type "Shared")
else()
set(library_type "Static")
endif()
message(" library type ........................ ${library_type}")
message("Optional modules:")
message(" ECDH ................................ ${SECP256K1_ENABLE_MODULE_ECDH}")
message(" ECDSA pubkey recovery ............... ${SECP256K1_ENABLE_MODULE_RECOVERY}")
message(" extrakeys ........................... ${SECP256K1_ENABLE_MODULE_EXTRAKEYS}")
message(" schnorrsig .......................... ${SECP256K1_ENABLE_MODULE_SCHNORRSIG}")
message("Parameters:")
message(" ecmult window size .................. ${SECP256K1_ECMULT_WINDOW_SIZE}")
message(" ecmult gen precision bits ........... ${SECP256K1_ECMULT_GEN_PREC_BITS}")
message("Optional features:")
message(" assembly optimization ............... ${SECP256K1_ASM}")
message(" external callbacks .................. ${SECP256K1_USE_EXTERNAL_DEFAULT_CALLBACKS}")
if(SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
message(" wide multiplication (test-only) ..... ${SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY}")
endif()
message("Optional binaries:")
message(" benchmark ........................... ${SECP256K1_BUILD_BENCHMARK}")
message(" noverify_tests ...................... ${SECP256K1_BUILD_TESTS}")
set(tests_status "${SECP256K1_BUILD_TESTS}")
if(CMAKE_BUILD_TYPE STREQUAL "Coverage")
set(tests_status OFF)
endif()
message(" tests ............................... ${tests_status}")
message(" exhaustive tests .................... ${SECP256K1_BUILD_EXHAUSTIVE_TESTS}")
message(" ctime_tests ......................... ${SECP256K1_BUILD_CTIME_TESTS}")
message(" examples ............................ ${SECP256K1_BUILD_EXAMPLES}")
message("")
if(CMAKE_CROSSCOMPILING)
set(cross_status "TRUE, for ${CMAKE_SYSTEM_NAME}, ${CMAKE_SYSTEM_PROCESSOR}")
else()
set(cross_status "FALSE")
endif()
message("Cross compiling ....................... ${cross_status}")
message("Valgrind .............................. ${SECP256K1_VALGRIND}")
get_directory_property(definitions COMPILE_DEFINITIONS)
string(REPLACE ";" " " definitions "${definitions}")
message("Preprocessor defined macros ........... ${definitions}")
message("C compiler ............................ ${CMAKE_C_COMPILER}")
message("CFLAGS ................................ ${CMAKE_C_FLAGS}")
get_directory_property(compile_options COMPILE_OPTIONS)
string(REPLACE ";" " " compile_options "${compile_options}")
message("Compile options ....................... " ${compile_options})
if(NOT is_multi_config)
message("Build type:")
message(" - CMAKE_BUILD_TYPE ................... ${CMAKE_BUILD_TYPE}")
string(TOUPPER "${CMAKE_BUILD_TYPE}" build_type)
message(" - CFLAGS ............................. ${CMAKE_C_FLAGS_${build_type}}")
message(" - LDFLAGS for executables ............ ${CMAKE_EXE_LINKER_FLAGS_${build_type}}")
message(" - LDFLAGS for shared libraries ....... ${CMAKE_SHARED_LINKER_FLAGS_${build_type}}")
else()
message("Supported configurations .............. ${CMAKE_CONFIGURATION_TYPES}")
message("RelWithDebInfo configuration:")
message(" - CFLAGS ............................. ${CMAKE_C_FLAGS_RELWITHDEBINFO}")
message(" - LDFLAGS for executables ............ ${CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFO}")
message(" - LDFLAGS for shared libraries ....... ${CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFO}")
message("Debug configuration:")
message(" - CFLAGS ............................. ${CMAKE_C_FLAGS_DEBUG}")
message(" - LDFLAGS for executables ............ ${CMAKE_EXE_LINKER_FLAGS_DEBUG}")
message(" - LDFLAGS for shared libraries ....... ${CMAKE_SHARED_LINKER_FLAGS_DEBUG}")
endif()
message("\n")
if(SECP256K1_EXPERIMENTAL)
message(
" ******\n"
" WARNING: experimental build\n"
" Experimental features do not have stable APIs or properties, and may not be safe for production use.\n"
" ******\n"
)
endif()

19
ext/secp256k1/COPYING Normal file
View File

@ -0,0 +1,19 @@
Copyright (c) 2013 Pieter Wuille
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

269
ext/secp256k1/Makefile.am Normal file
View File

@ -0,0 +1,269 @@
ACLOCAL_AMFLAGS = -I build-aux/m4
# AM_CFLAGS will be automatically prepended to CFLAGS by Automake when compiling some foo
# which does not have an explicit foo_CFLAGS variable set.
AM_CFLAGS = $(SECP_CFLAGS)
lib_LTLIBRARIES = libsecp256k1.la
include_HEADERS = include/secp256k1.h
include_HEADERS += include/secp256k1_preallocated.h
noinst_HEADERS =
noinst_HEADERS += src/scalar.h
noinst_HEADERS += src/scalar_4x64.h
noinst_HEADERS += src/scalar_8x32.h
noinst_HEADERS += src/scalar_low.h
noinst_HEADERS += src/scalar_impl.h
noinst_HEADERS += src/scalar_4x64_impl.h
noinst_HEADERS += src/scalar_8x32_impl.h
noinst_HEADERS += src/scalar_low_impl.h
noinst_HEADERS += src/group.h
noinst_HEADERS += src/group_impl.h
noinst_HEADERS += src/ecdsa.h
noinst_HEADERS += src/ecdsa_impl.h
noinst_HEADERS += src/eckey.h
noinst_HEADERS += src/eckey_impl.h
noinst_HEADERS += src/ecmult.h
noinst_HEADERS += src/ecmult_impl.h
noinst_HEADERS += src/ecmult_compute_table.h
noinst_HEADERS += src/ecmult_compute_table_impl.h
noinst_HEADERS += src/ecmult_const.h
noinst_HEADERS += src/ecmult_const_impl.h
noinst_HEADERS += src/ecmult_gen.h
noinst_HEADERS += src/ecmult_gen_impl.h
noinst_HEADERS += src/ecmult_gen_compute_table.h
noinst_HEADERS += src/ecmult_gen_compute_table_impl.h
noinst_HEADERS += src/field_10x26.h
noinst_HEADERS += src/field_10x26_impl.h
noinst_HEADERS += src/field_5x52.h
noinst_HEADERS += src/field_5x52_impl.h
noinst_HEADERS += src/field_5x52_int128_impl.h
noinst_HEADERS += src/field_5x52_asm_impl.h
noinst_HEADERS += src/modinv32.h
noinst_HEADERS += src/modinv32_impl.h
noinst_HEADERS += src/modinv64.h
noinst_HEADERS += src/modinv64_impl.h
noinst_HEADERS += src/precomputed_ecmult.h
noinst_HEADERS += src/precomputed_ecmult_gen.h
noinst_HEADERS += src/assumptions.h
noinst_HEADERS += src/checkmem.h
noinst_HEADERS += src/util.h
noinst_HEADERS += src/int128.h
noinst_HEADERS += src/int128_impl.h
noinst_HEADERS += src/int128_native.h
noinst_HEADERS += src/int128_native_impl.h
noinst_HEADERS += src/int128_struct.h
noinst_HEADERS += src/int128_struct_impl.h
noinst_HEADERS += src/scratch.h
noinst_HEADERS += src/scratch_impl.h
noinst_HEADERS += src/selftest.h
noinst_HEADERS += src/testrand.h
noinst_HEADERS += src/testrand_impl.h
noinst_HEADERS += src/hash.h
noinst_HEADERS += src/hash_impl.h
noinst_HEADERS += src/field.h
noinst_HEADERS += src/field_impl.h
noinst_HEADERS += src/bench.h
noinst_HEADERS += src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h
noinst_HEADERS += contrib/lax_der_parsing.h
noinst_HEADERS += contrib/lax_der_parsing.c
noinst_HEADERS += contrib/lax_der_privatekey_parsing.h
noinst_HEADERS += contrib/lax_der_privatekey_parsing.c
noinst_HEADERS += examples/examples_util.h
PRECOMPUTED_LIB = libsecp256k1_precomputed.la
noinst_LTLIBRARIES = $(PRECOMPUTED_LIB)
libsecp256k1_precomputed_la_SOURCES = src/precomputed_ecmult.c src/precomputed_ecmult_gen.c
# We need `-I$(top_srcdir)/src` in VPATH builds if libsecp256k1_precomputed_la_SOURCES have been recreated in the build tree.
# This helps users and packagers who insist on recreating the precomputed files (e.g., Gentoo).
libsecp256k1_precomputed_la_CPPFLAGS = -I$(top_srcdir)/src $(SECP_CONFIG_DEFINES)
if USE_EXTERNAL_ASM
COMMON_LIB = libsecp256k1_common.la
else
COMMON_LIB =
endif
noinst_LTLIBRARIES += $(COMMON_LIB)
pkgconfigdir = $(libdir)/pkgconfig
pkgconfig_DATA = libsecp256k1.pc
if USE_EXTERNAL_ASM
if USE_ASM_ARM
libsecp256k1_common_la_SOURCES = src/asm/field_10x26_arm.s
endif
endif
libsecp256k1_la_SOURCES = src/secp256k1.c
libsecp256k1_la_CPPFLAGS = $(SECP_CONFIG_DEFINES)
libsecp256k1_la_LIBADD = $(COMMON_LIB) $(PRECOMPUTED_LIB)
libsecp256k1_la_LDFLAGS = -no-undefined -version-info $(LIB_VERSION_CURRENT):$(LIB_VERSION_REVISION):$(LIB_VERSION_AGE)
noinst_PROGRAMS =
if USE_BENCHMARK
noinst_PROGRAMS += bench bench_internal bench_ecmult
bench_SOURCES = src/bench.c
bench_LDADD = libsecp256k1.la
bench_CPPFLAGS = $(SECP_CONFIG_DEFINES)
bench_internal_SOURCES = src/bench_internal.c
bench_internal_LDADD = $(COMMON_LIB) $(PRECOMPUTED_LIB)
bench_internal_CPPFLAGS = $(SECP_CONFIG_DEFINES)
bench_ecmult_SOURCES = src/bench_ecmult.c
bench_ecmult_LDADD = $(COMMON_LIB) $(PRECOMPUTED_LIB)
bench_ecmult_CPPFLAGS = $(SECP_CONFIG_DEFINES)
endif
TESTS =
if USE_TESTS
TESTS += noverify_tests
noinst_PROGRAMS += noverify_tests
noverify_tests_SOURCES = src/tests.c
noverify_tests_CPPFLAGS = $(SECP_CONFIG_DEFINES)
noverify_tests_LDADD = $(COMMON_LIB) $(PRECOMPUTED_LIB)
noverify_tests_LDFLAGS = -static
if !ENABLE_COVERAGE
TESTS += tests
noinst_PROGRAMS += tests
tests_SOURCES = $(noverify_tests_SOURCES)
tests_CPPFLAGS = $(noverify_tests_CPPFLAGS) -DVERIFY
tests_LDADD = $(noverify_tests_LDADD)
tests_LDFLAGS = $(noverify_tests_LDFLAGS)
endif
endif
if USE_CTIME_TESTS
noinst_PROGRAMS += ctime_tests
ctime_tests_SOURCES = src/ctime_tests.c
ctime_tests_LDADD = libsecp256k1.la
ctime_tests_CPPFLAGS = $(SECP_CONFIG_DEFINES)
endif
if USE_EXHAUSTIVE_TESTS
noinst_PROGRAMS += exhaustive_tests
exhaustive_tests_SOURCES = src/tests_exhaustive.c
exhaustive_tests_CPPFLAGS = $(SECP_CONFIG_DEFINES)
if !ENABLE_COVERAGE
exhaustive_tests_CPPFLAGS += -DVERIFY
endif
# Note: do not include $(PRECOMPUTED_LIB) in exhaustive_tests (it uses runtime-generated tables).
exhaustive_tests_LDADD = $(COMMON_LIB)
exhaustive_tests_LDFLAGS = -static
TESTS += exhaustive_tests
endif
if USE_EXAMPLES
noinst_PROGRAMS += ecdsa_example
ecdsa_example_SOURCES = examples/ecdsa.c
ecdsa_example_CPPFLAGS = -I$(top_srcdir)/include
ecdsa_example_LDADD = libsecp256k1.la
ecdsa_example_LDFLAGS = -static
if BUILD_WINDOWS
ecdsa_example_LDFLAGS += -lbcrypt
endif
TESTS += ecdsa_example
if ENABLE_MODULE_ECDH
noinst_PROGRAMS += ecdh_example
ecdh_example_SOURCES = examples/ecdh.c
ecdh_example_CPPFLAGS = -I$(top_srcdir)/include
ecdh_example_LDADD = libsecp256k1.la
ecdh_example_LDFLAGS = -static
if BUILD_WINDOWS
ecdh_example_LDFLAGS += -lbcrypt
endif
TESTS += ecdh_example
endif
if ENABLE_MODULE_SCHNORRSIG
noinst_PROGRAMS += schnorr_example
schnorr_example_SOURCES = examples/schnorr.c
schnorr_example_CPPFLAGS = -I$(top_srcdir)/include
schnorr_example_LDADD = libsecp256k1.la
schnorr_example_LDFLAGS = -static
if BUILD_WINDOWS
schnorr_example_LDFLAGS += -lbcrypt
endif
TESTS += schnorr_example
endif
endif
### Precomputed tables
EXTRA_PROGRAMS = precompute_ecmult precompute_ecmult_gen
CLEANFILES = $(EXTRA_PROGRAMS)
precompute_ecmult_SOURCES = src/precompute_ecmult.c
precompute_ecmult_CPPFLAGS = $(SECP_CONFIG_DEFINES)
precompute_ecmult_LDADD = $(COMMON_LIB)
precompute_ecmult_gen_SOURCES = src/precompute_ecmult_gen.c
precompute_ecmult_gen_CPPFLAGS = $(SECP_CONFIG_DEFINES)
precompute_ecmult_gen_LDADD = $(COMMON_LIB)
# See Automake manual, Section "Errors with distclean".
# We don't list any dependencies for the prebuilt files here because
# otherwise make's decision whether to rebuild them (even in the first
# build by a normal user) depends on mtimes, and thus is very fragile.
# This means that rebuilds of the prebuilt files always need to be
# forced by deleting them.
src/precomputed_ecmult.c:
$(MAKE) $(AM_MAKEFLAGS) precompute_ecmult$(EXEEXT)
./precompute_ecmult$(EXEEXT)
src/precomputed_ecmult_gen.c:
$(MAKE) $(AM_MAKEFLAGS) precompute_ecmult_gen$(EXEEXT)
./precompute_ecmult_gen$(EXEEXT)
PRECOMP = src/precomputed_ecmult_gen.c src/precomputed_ecmult.c
precomp: $(PRECOMP)
# Ensure the prebuilt files will be build first (only if they don't exist,
# e.g., after `make maintainer-clean`).
BUILT_SOURCES = $(PRECOMP)
.PHONY: clean-precomp
clean-precomp:
rm -f $(PRECOMP)
maintainer-clean-local: clean-precomp
### Pregenerated test vectors
### (see the comments in the previous section for detailed rationale)
TESTVECTORS = src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h
src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h:
mkdir -p $(@D)
python3 $(top_srcdir)/tools/tests_wycheproof_generate.py $(top_srcdir)/src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.json > $@
testvectors: $(TESTVECTORS)
BUILT_SOURCES += $(TESTVECTORS)
.PHONY: clean-testvectors
clean-testvectors:
rm -f $(TESTVECTORS)
maintainer-clean-local: clean-testvectors
### Additional files to distribute
EXTRA_DIST = autogen.sh CHANGELOG.md SECURITY.md
EXTRA_DIST += doc/release-process.md doc/safegcd_implementation.md
EXTRA_DIST += examples/EXAMPLES_COPYING
EXTRA_DIST += sage/gen_exhaustive_groups.sage
EXTRA_DIST += sage/gen_split_lambda_constants.sage
EXTRA_DIST += sage/group_prover.sage
EXTRA_DIST += sage/prove_group_implementations.sage
EXTRA_DIST += sage/secp256k1_params.sage
EXTRA_DIST += sage/weierstrass_prover.sage
EXTRA_DIST += src/wycheproof/WYCHEPROOF_COPYING
EXTRA_DIST += src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.json
EXTRA_DIST += tools/tests_wycheproof_generate.py
if ENABLE_MODULE_ECDH
include src/modules/ecdh/Makefile.am.include
endif
if ENABLE_MODULE_RECOVERY
include src/modules/recovery/Makefile.am.include
endif
if ENABLE_MODULE_EXTRAKEYS
include src/modules/extrakeys/Makefile.am.include
endif
if ENABLE_MODULE_SCHNORRSIG
include src/modules/schnorrsig/Makefile.am.include
endif

157
ext/secp256k1/README.md Normal file
View File

@ -0,0 +1,157 @@
libsecp256k1
============
[![Build Status](https://api.cirrus-ci.com/github/bitcoin-core/secp256k1.svg?branch=master)](https://cirrus-ci.com/github/bitcoin-core/secp256k1)
![Dependencies: None](https://img.shields.io/badge/dependencies-none-success)
[![irc.libera.chat #secp256k1](https://img.shields.io/badge/irc.libera.chat-%23secp256k1-success)](https://web.libera.chat/#secp256k1)
Optimized C library for ECDSA signatures and secret/public key operations on curve secp256k1.
This library is intended to be the highest quality publicly available library for cryptography on the secp256k1 curve. However, the primary focus of its development has been for usage in the Bitcoin system and usage unlike Bitcoin's may be less well tested, verified, or suffer from a less well thought out interface. Correct usage requires some care and consideration that the library is fit for your application's purpose.
Features:
* secp256k1 ECDSA signing/verification and key generation.
* Additive and multiplicative tweaking of secret/public keys.
* Serialization/parsing of secret keys, public keys, signatures.
* Constant time, constant memory access signing and public key generation.
* Derandomized ECDSA (via RFC6979 or with a caller provided function.)
* Very efficient implementation.
* Suitable for embedded systems.
* No runtime dependencies.
* Optional module for public key recovery.
* Optional module for ECDH key exchange.
* Optional module for Schnorr signatures according to [BIP-340](https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki).
Implementation details
----------------------
* General
* No runtime heap allocation.
* Extensive testing infrastructure.
* Structured to facilitate review and analysis.
* Intended to be portable to any system with a C89 compiler and uint64_t support.
* No use of floating types.
* Expose only higher level interfaces to minimize the API surface and improve application security. ("Be difficult to use insecurely.")
* Field operations
* Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1).
* Using 5 52-bit limbs (including hand-optimized assembly for x86_64, by Diederik Huys).
* Using 10 26-bit limbs (including hand-optimized assembly for 32-bit ARM, by Wladimir J. van der Laan).
* This is an experimental feature that has not received enough scrutiny to satisfy the standard of quality of this library but is made available for testing and review by the community.
* Scalar operations
* Optimized implementation without data-dependent branches of arithmetic modulo the curve's order.
* Using 4 64-bit limbs (relying on __int128 support in the compiler).
* Using 8 32-bit limbs.
* Modular inverses (both field elements and scalars) based on [safegcd](https://gcd.cr.yp.to/index.html) with some modifications, and a variable-time variant (by Peter Dettman).
* Group operations
* Point addition formula specifically simplified for the curve equation (y^2 = x^3 + 7).
* Use addition between points in Jacobian and affine coordinates where possible.
* Use a unified addition/doubling formula where necessary to avoid data-dependent branches.
* Point/x comparison without a field inversion by comparison in the Jacobian coordinate space.
* Point multiplication for verification (a*P + b*G).
* Use wNAF notation for point multiplicands.
* Use a much larger window for multiples of G, using precomputed multiples.
* Use Shamir's trick to do the multiplication with the public key and the generator simultaneously.
* Use secp256k1's efficiently-computable endomorphism to split the P multiplicand into 2 half-sized ones.
* Point multiplication for signing
* Use a precomputed table of multiples of powers of 16 multiplied with the generator, so general multiplication becomes a series of additions.
* Intended to be completely free of timing sidechannels for secret-key operations (on reasonable hardware/toolchains)
* Access the table with branch-free conditional moves so memory access is uniform.
* No data-dependent branches
* Optional runtime blinding which attempts to frustrate differential power analysis.
* The precomputed tables add and eventually subtract points for which no known scalar (secret key) is known, preventing even an attacker with control over the secret key used to control the data internally.
Building with Autotools
-----------------------
$ ./autogen.sh
$ ./configure
$ make
$ make check # run the test suite
$ sudo make install # optional
To compile optional modules (such as Schnorr signatures), you need to run `./configure` with additional flags (such as `--enable-module-schnorrsig`). Run `./configure --help` to see the full list of available flags.
Building with CMake (experimental)
----------------------------------
To maintain a pristine source tree, CMake encourages to perform an out-of-source build by using a separate dedicated build tree.
### Building on POSIX systems
$ mkdir build && cd build
$ cmake ..
$ make
$ make check # run the test suite
$ sudo make install # optional
To compile optional modules (such as Schnorr signatures), you need to run `cmake` with additional flags (such as `-DSECP256K1_ENABLE_MODULE_SCHNORRSIG=ON`). Run `cmake .. -LH` to see the full list of available flags.
### Cross compiling
To alleviate issues with cross compiling, preconfigured toolchain files are available in the `cmake` directory.
For example, to cross compile for Windows:
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=../cmake/x86_64-w64-mingw32.toolchain.cmake
To cross compile for Android with [NDK](https://developer.android.com/ndk/guides/cmake) (using NDK's toolchain file, and assuming the `ANDROID_NDK_ROOT` environment variable has been set):
$ cmake .. -DCMAKE_TOOLCHAIN_FILE="${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake" -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=28
### Building on Windows
To build on Windows with Visual Studio, a proper [generator](https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html#visual-studio-generators) must be specified for a new build tree.
The following example assumes using of Visual Studio 2022 and CMake v3.21+.
In "Developer Command Prompt for VS 2022":
>cmake -G "Visual Studio 17 2022" -A x64 -S . -B build
>cmake --build build --config RelWithDebInfo
Usage examples
-----------
Usage examples can be found in the [examples](examples) directory. To compile them you need to configure with `--enable-examples`.
* [ECDSA example](examples/ecdsa.c)
* [Schnorr signatures example](examples/schnorr.c)
* [Deriving a shared secret (ECDH) example](examples/ecdh.c)
To compile the Schnorr signature and ECDH examples, you also need to configure with `--enable-module-schnorrsig` and `--enable-module-ecdh`.
Test coverage
-----------
This library aims to have full coverage of the reachable lines and branches.
To create a test coverage report, configure with `--enable-coverage` (use of GCC is necessary):
$ ./configure --enable-coverage
Run the tests:
$ make check
To create a report, `gcovr` is recommended, as it includes branch coverage reporting:
$ gcovr --exclude 'src/bench*' --print-summary
To create a HTML report with coloured and annotated source code:
$ mkdir -p coverage
$ gcovr --exclude 'src/bench*' --html --html-details -o coverage/coverage.html
Benchmark
------------
If configured with `--enable-benchmark` (which is the default), binaries for benchmarking the libsecp256k1 functions will be present in the root directory after the build.
To print the benchmark result to the command line:
$ ./bench_name
To create a CSV file for the benchmark result :
$ ./bench_name | sed '2d;s/ \{1,\}//g' > bench_name.csv
Reporting a vulnerability
------------
See [SECURITY.md](SECURITY.md)

15
ext/secp256k1/SECURITY.md Normal file
View File

@ -0,0 +1,15 @@
# Security Policy
## Reporting a Vulnerability
To report security issues send an email to secp256k1-security@bitcoincore.org (not for support).
The following keys may be used to communicate sensitive information to developers:
| Name | Fingerprint |
|------|-------------|
| Pieter Wuille | 133E AC17 9436 F14A 5CF1 B794 860F EB80 4E66 9320 |
| Jonas Nick | 36C7 1A37 C9D9 88BD E825 08D9 B1A7 0E4F 8DCD 0366 |
| Tim Ruffing | 09E0 3F87 1092 E40E 106E 902B 33BC 86AB 80FF 5516 |
You can import a key by running the following command with that individuals fingerprint: `gpg --keyserver hkps://keys.openpgp.org --recv-keys "<fingerprint>"` Ensure that you put quotes around fingerprints containing spaces.

3
ext/secp256k1/autogen.sh Normal file
View File

@ -0,0 +1,3 @@
#!/bin/sh
set -e
autoreconf -if --warnings=all

View File

@ -0,0 +1,75 @@
dnl escape "$0x" below using the m4 quadrigaph @S|@, and escape it again with a \ for the shell.
AC_DEFUN([SECP_X86_64_ASM_CHECK],[
AC_MSG_CHECKING(for x86_64 assembly availability)
AC_LINK_IFELSE([AC_LANG_PROGRAM([[
#include <stdint.h>]],[[
uint64_t a = 11, tmp;
__asm__ __volatile__("movq \@S|@0x100000000,%1; mulq %%rsi" : "+a"(a) : "S"(tmp) : "cc", "%rdx");
]])], [has_x86_64_asm=yes], [has_x86_64_asm=no])
AC_MSG_RESULT([$has_x86_64_asm])
])
AC_DEFUN([SECP_ARM32_ASM_CHECK], [
AC_MSG_CHECKING(for ARM32 assembly availability)
SECP_ARM32_ASM_CHECK_CFLAGS_saved_CFLAGS="$CFLAGS"
CFLAGS="-x assembler"
AC_LINK_IFELSE([AC_LANG_SOURCE([[
.syntax unified
.eabi_attribute 24, 1
.eabi_attribute 25, 1
.text
.global main
main:
ldr r0, =0x002A
mov r7, #1
swi 0
]])], [has_arm32_asm=yes], [has_arm32_asm=no])
AC_MSG_RESULT([$has_arm32_asm])
CFLAGS="$SECP_ARM32_ASM_CHECK_CFLAGS_saved_CFLAGS"
])
AC_DEFUN([SECP_VALGRIND_CHECK],[
AC_MSG_CHECKING([for valgrind support])
if test x"$has_valgrind" != x"yes"; then
CPPFLAGS_TEMP="$CPPFLAGS"
CPPFLAGS="$VALGRIND_CPPFLAGS $CPPFLAGS"
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
#include <valgrind/memcheck.h>
]], [[
#if defined(NVALGRIND)
# error "Valgrind does not support this platform."
#endif
]])], [has_valgrind=yes])
CPPFLAGS="$CPPFLAGS_TEMP"
fi
AC_MSG_RESULT($has_valgrind)
])
dnl SECP_TRY_APPEND_CFLAGS(flags, VAR)
dnl Append flags to VAR if CC accepts them.
AC_DEFUN([SECP_TRY_APPEND_CFLAGS], [
AC_MSG_CHECKING([if ${CC} supports $1])
SECP_TRY_APPEND_CFLAGS_saved_CFLAGS="$CFLAGS"
CFLAGS="$1 $CFLAGS"
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], [flag_works=yes], [flag_works=no])
AC_MSG_RESULT($flag_works)
CFLAGS="$SECP_TRY_APPEND_CFLAGS_saved_CFLAGS"
if test x"$flag_works" = x"yes"; then
$2="$$2 $1"
fi
unset flag_works
AC_SUBST($2)
])
dnl SECP_SET_DEFAULT(VAR, default, default-dev-mode)
dnl Set VAR to default or default-dev-mode, depending on whether dev mode is enabled
AC_DEFUN([SECP_SET_DEFAULT], [
if test "${enable_dev_mode+set}" != set; then
AC_MSG_ERROR([[Set enable_dev_mode before calling SECP_SET_DEFAULT]])
fi
if test x"$enable_dev_mode" = x"yes"; then
$1="$3"
else
$1="$2"
fi
])

118
ext/secp256k1/ci/cirrus.sh Normal file
View File

@ -0,0 +1,118 @@
#!/bin/sh
set -eux
export LC_ALL=C
# Print relevant CI environment to allow reproducing the job outside of CI.
print_environment() {
# Turn off -x because it messes up the output
set +x
# There are many ways to print variable names and their content. This one
# does not rely on bash.
for var in WERROR_CFLAGS MAKEFLAGS BUILD \
ECMULTWINDOW ECMULTGENPRECISION ASM WIDEMUL WITH_VALGRIND EXTRAFLAGS \
EXPERIMENTAL ECDH RECOVERY SCHNORRSIG \
SECP256K1_TEST_ITERS BENCH SECP256K1_BENCH_ITERS CTIMETESTS\
EXAMPLES \
HOST WRAPPER_CMD \
CC CFLAGS CPPFLAGS AR NM
do
eval "isset=\${$var+x}"
if [ -n "$isset" ]; then
eval "val=\${$var}"
# shellcheck disable=SC2154
printf '%s="%s" ' "$var" "$val"
fi
done
echo "$0"
set -x
}
print_environment
# Start persistent wineserver if necessary.
# This speeds up jobs with many invocations of wine (e.g., ./configure with MSVC) tremendously.
case "$WRAPPER_CMD" in
*wine*)
# Make sure to shutdown wineserver whenever we exit.
trap "wineserver -k || true" EXIT INT HUP
# This is apparently only reliable when we run a dummy command such as "hh.exe" afterwards.
wineserver -p && wine hh.exe
;;
esac
env >> test_env.log
if [ -n "${CC+x}" ]; then
# The MSVC compiler "cl" doesn't understand "-v"
$CC -v || true
fi
if [ "$WITH_VALGRIND" = "yes" ]; then
valgrind --version
fi
if [ -n "$WRAPPER_CMD" ]; then
$WRAPPER_CMD --version
fi
./autogen.sh
./configure \
--enable-experimental="$EXPERIMENTAL" \
--with-test-override-wide-multiply="$WIDEMUL" --with-asm="$ASM" \
--with-ecmult-window="$ECMULTWINDOW" \
--with-ecmult-gen-precision="$ECMULTGENPRECISION" \
--enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" \
--enable-module-schnorrsig="$SCHNORRSIG" \
--enable-examples="$EXAMPLES" \
--enable-ctime-tests="$CTIMETESTS" \
--with-valgrind="$WITH_VALGRIND" \
--host="$HOST" $EXTRAFLAGS
# We have set "-j<n>" in MAKEFLAGS.
make
# Print information about binaries so that we can see that the architecture is correct
file *tests* || true
file bench* || true
file .libs/* || true
# This tells `make check` to wrap test invocations.
export LOG_COMPILER="$WRAPPER_CMD"
make "$BUILD"
# Using the local `libtool` because on macOS the system's libtool has nothing to do with GNU libtool
EXEC='./libtool --mode=execute'
if [ -n "$WRAPPER_CMD" ]
then
EXEC="$EXEC $WRAPPER_CMD"
fi
if [ "$BENCH" = "yes" ]
then
{
$EXEC ./bench_ecmult
$EXEC ./bench_internal
$EXEC ./bench
} >> bench.log 2>&1
fi
if [ "$CTIMETESTS" = "yes" ]
then
if [ "$WITH_VALGRIND" = "yes" ]; then
./libtool --mode=execute valgrind --error-exitcode=42 ./ctime_tests > ctime_tests.log 2>&1
else
$EXEC ./ctime_tests > ctime_tests.log 2>&1
fi
fi
# Rebuild precomputed files (if not cross-compiling).
if [ -z "$HOST" ]
then
make clean-precomp clean-testvectors
make precomp testvectors
fi
# Check that no repo files have been modified by the build.
# (This fails for example if the precomp files need to be updated in the repo.)
git diff --exit-code

View File

@ -0,0 +1,37 @@
FROM debian:stable
RUN dpkg --add-architecture i386 && \
dpkg --add-architecture s390x && \
dpkg --add-architecture armhf && \
dpkg --add-architecture arm64 && \
dpkg --add-architecture ppc64el
# dkpg-dev: to make pkg-config work in cross-builds
# llvm: for llvm-symbolizer, which is used by clang's UBSan for symbolized stack traces
RUN apt-get update && apt-get install --no-install-recommends -y \
git ca-certificates \
make automake libtool pkg-config dpkg-dev valgrind qemu-user \
gcc clang llvm libc6-dbg \
g++ \
gcc-i686-linux-gnu libc6-dev-i386-cross libc6-dbg:i386 libubsan1:i386 libasan6:i386 \
gcc-s390x-linux-gnu libc6-dev-s390x-cross libc6-dbg:s390x \
gcc-arm-linux-gnueabihf libc6-dev-armhf-cross libc6-dbg:armhf \
gcc-aarch64-linux-gnu libc6-dev-arm64-cross libc6-dbg:arm64 \
gcc-powerpc64le-linux-gnu libc6-dev-ppc64el-cross libc6-dbg:ppc64el \
gcc-mingw-w64-x86-64-win32 wine64 wine \
gcc-mingw-w64-i686-win32 wine32 \
sagemath
WORKDIR /root
# The "wine" package provides a convience wrapper that we need
RUN apt-get update && apt-get install --no-install-recommends -y \
git ca-certificates wine64 wine python3-simplejson python3-six msitools winbind procps && \
git clone https://github.com/mstorsjo/msvc-wine && \
mkdir /opt/msvc && \
python3 msvc-wine/vsdownload.py --accept-license --dest /opt/msvc Microsoft.VisualStudio.Workload.VCTools && \
msvc-wine/install.sh /opt/msvc
# Initialize the wine environment. Wait until the wineserver process has
# exited before closing the session, to avoid corrupting the wine prefix.
RUN wine64 wineboot --init && \
while (ps -A | grep wineserver) > /dev/null; do sleep 1; done

View File

@ -0,0 +1,6 @@
function(check_arm32_assembly)
try_compile(HAVE_ARM32_ASM
${CMAKE_BINARY_DIR}/check_arm32_assembly
SOURCES ${CMAKE_SOURCE_DIR}/cmake/source_arm32.s
)
endfunction()

View File

@ -0,0 +1,10 @@
function(check_string_option_value option)
get_property(expected_values CACHE ${option} PROPERTY STRINGS)
if(expected_values)
if(${option} IN_LIST expected_values)
return()
endif()
message(FATAL_ERROR "${option} value is \"${${option}}\", but must be one of ${expected_values}.")
endif()
message(AUTHOR_WARNING "The STRINGS property must be set before invoking `check_string_option_value' function.")
endfunction()

View File

@ -0,0 +1,14 @@
include(CheckCSourceCompiles)
function(check_x86_64_assembly)
check_c_source_compiles("
#include <stdint.h>
int main()
{
uint64_t a = 11, tmp;
__asm__ __volatile__(\"movq $0x100000000,%1; mulq %%rsi\" : \"+a\"(a) : \"S\"(tmp) : \"cc\", \"%rdx\");
}
" HAVE_X86_64_ASM)
set(HAVE_X86_64_ASM ${HAVE_X86_64_ASM} PARENT_SCOPE)
endfunction()

View File

@ -0,0 +1,41 @@
if(CMAKE_HOST_APPLE)
find_program(BREW_COMMAND brew)
execute_process(
COMMAND ${BREW_COMMAND} --prefix valgrind
OUTPUT_VARIABLE valgrind_brew_prefix
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE
)
endif()
set(hints_paths)
if(valgrind_brew_prefix)
set(hints_paths ${valgrind_brew_prefix}/include)
endif()
find_path(Valgrind_INCLUDE_DIR
NAMES valgrind/memcheck.h
HINTS ${hints_paths}
)
if(Valgrind_INCLUDE_DIR)
include(CheckCSourceCompiles)
set(CMAKE_REQUIRED_INCLUDES ${Valgrind_INCLUDE_DIR})
check_c_source_compiles("
#include <valgrind/memcheck.h>
#if defined(NVALGRIND)
# error \"Valgrind does not support this platform.\"
#endif
int main() {}
" Valgrind_WORKS)
endif()
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(Valgrind
REQUIRED_VARS Valgrind_INCLUDE_DIR Valgrind_WORKS
)
mark_as_advanced(
Valgrind_INCLUDE_DIR
)

View File

@ -0,0 +1,24 @@
include(CheckCCompilerFlag)
function(secp256k1_check_c_flags_internal flags output)
string(MAKE_C_IDENTIFIER "${flags}" result)
string(TOUPPER "${result}" result)
set(result "C_SUPPORTS_${result}")
if(NOT MSVC)
set(CMAKE_REQUIRED_FLAGS "-Werror")
endif()
# This avoids running a linker.
set(CMAKE_TRY_COMPILE_TARGET_TYPE STATIC_LIBRARY)
check_c_compiler_flag("${flags}" ${result})
set(${output} ${${result}} PARENT_SCOPE)
endfunction()
# Append flags to the COMPILE_OPTIONS directory property if CC accepts them.
macro(try_append_c_flags)
secp256k1_check_c_flags_internal("${ARGV}" result)
if(result)
add_compile_options(${ARGV})
endif()
endmacro()

View File

@ -0,0 +1,3 @@
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
set(CMAKE_C_COMPILER arm-linux-gnueabihf-gcc)

View File

@ -0,0 +1,5 @@
@PACKAGE_INIT@
include("${CMAKE_CURRENT_LIST_DIR}/@PROJECT_NAME@-targets.cmake")
check_required_components(@PROJECT_NAME@)

View File

@ -0,0 +1,9 @@
.syntax unified
.eabi_attribute 24, 1
.eabi_attribute 25, 1
.text
.global main
main:
ldr r0, =0x002A
mov r7, #1
swi 0

View File

@ -0,0 +1,3 @@
set(CMAKE_SYSTEM_NAME Windows)
set(CMAKE_SYSTEM_PROCESSOR x86_64)
set(CMAKE_C_COMPILER x86_64-w64-mingw32-gcc)

477
ext/secp256k1/configure.ac Normal file
View File

@ -0,0 +1,477 @@
AC_PREREQ([2.60])
# The package (a.k.a. release) version is based on semantic versioning 2.0.0 of
# the API. All changes in experimental modules are treated as
# backwards-compatible and therefore at most increase the minor version.
define(_PKG_VERSION_MAJOR, 0)
define(_PKG_VERSION_MINOR, 3)
define(_PKG_VERSION_PATCH, 2)
define(_PKG_VERSION_IS_RELEASE, true)
# The library version is based on libtool versioning of the ABI. The set of
# rules for updating the version can be found here:
# https://www.gnu.org/software/libtool/manual/html_node/Updating-version-info.html
# All changes in experimental modules are treated as if they don't affect the
# interface and therefore only increase the revision.
define(_LIB_VERSION_CURRENT, 2)
define(_LIB_VERSION_REVISION, 2)
define(_LIB_VERSION_AGE, 0)
AC_INIT([libsecp256k1],m4_join([.], _PKG_VERSION_MAJOR, _PKG_VERSION_MINOR, _PKG_VERSION_PATCH)m4_if(_PKG_VERSION_IS_RELEASE, [true], [], [-dev]),[https://github.com/bitcoin-core/secp256k1/issues],[libsecp256k1],[https://github.com/bitcoin-core/secp256k1])
AC_CONFIG_AUX_DIR([build-aux])
AC_CONFIG_MACRO_DIR([build-aux/m4])
AC_CANONICAL_HOST
# Require Automake 1.11.2 for AM_PROG_AR
AM_INIT_AUTOMAKE([1.11.2 foreign subdir-objects])
# Make the compilation flags quiet unless V=1 is used.
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
if test "${CFLAGS+set}" = "set"; then
CFLAGS_overridden=yes
else
CFLAGS_overridden=no
fi
AC_PROG_CC
AM_PROG_AS
AM_PROG_AR
# Clear some cache variables as a workaround for a bug that appears due to a bad
# interaction between AM_PROG_AR and LT_INIT when combining MSVC's archiver lib.exe.
# https://debbugs.gnu.org/cgi/bugreport.cgi?bug=54421
AS_UNSET(ac_cv_prog_AR)
AS_UNSET(ac_cv_prog_ac_ct_AR)
LT_INIT([win32-dll])
build_windows=no
case $host_os in
*darwin*)
if test x$cross_compiling != xyes; then
AC_CHECK_PROG([BREW], brew, brew)
if test x$BREW = xbrew; then
# These Homebrew packages may be keg-only, meaning that they won't be found
# in expected paths because they may conflict with system files. Ask
# Homebrew where each one is located, then adjust paths accordingly.
if $BREW list --versions valgrind >/dev/null; then
valgrind_prefix=$($BREW --prefix valgrind 2>/dev/null)
VALGRIND_CPPFLAGS="-I$valgrind_prefix/include"
fi
else
AC_CHECK_PROG([PORT], port, port)
# If homebrew isn't installed and macports is, add the macports default paths
# as a last resort.
if test x$PORT = xport; then
CPPFLAGS="$CPPFLAGS -isystem /opt/local/include"
LDFLAGS="$LDFLAGS -L/opt/local/lib"
fi
fi
fi
;;
cygwin*|mingw*)
build_windows=yes
;;
esac
# Try if some desirable compiler flags are supported and append them to SECP_CFLAGS.
#
# These are our own flags, so we append them to our own SECP_CFLAGS variable (instead of CFLAGS) as
# recommended in the automake manual (Section "Flag Variables Ordering"). CFLAGS belongs to the user
# and we are not supposed to touch it. In the Makefile, we will need to ensure that SECP_CFLAGS
# is prepended to CFLAGS when invoking the compiler so that the user always has the last word (flag).
#
# Another advantage of not touching CFLAGS is that the contents of CFLAGS will be picked up by
# libtool for compiling helper executables. For example, when compiling for Windows, libtool will
# generate entire wrapper executables (instead of simple wrapper scripts as on Unix) to ensure
# proper operation of uninstalled programs linked by libtool against the uninstalled shared library.
# These executables are compiled from C source file for which our flags may not be appropriate,
# e.g., -std=c89 flag has lead to undesirable warnings in the past.
#
# TODO We should analogously not touch CPPFLAGS and LDFLAGS but currently there are no issues.
AC_DEFUN([SECP_TRY_APPEND_DEFAULT_CFLAGS], [
# GCC and compatible (incl. clang)
if test "x$GCC" = "xyes"; then
# Try to append -Werror to CFLAGS temporarily. Otherwise checks for some unsupported
# flags will succeed.
# Note that failure to append -Werror does not necessarily mean that -Werror is not
# supported. The compiler may already be warning about something unrelated, for example
# about some path issue. If that is the case, -Werror cannot be used because all
# of those warnings would be turned into errors.
SECP_TRY_APPEND_DEFAULT_CFLAGS_saved_CFLAGS="$CFLAGS"
SECP_TRY_APPEND_CFLAGS([-Werror], CFLAGS)
SECP_TRY_APPEND_CFLAGS([-std=c89 -pedantic -Wno-long-long -Wnested-externs -Wshadow -Wstrict-prototypes -Wundef], $1) # GCC >= 3.0, -Wlong-long is implied by -pedantic.
SECP_TRY_APPEND_CFLAGS([-Wno-overlength-strings], $1) # GCC >= 4.2, -Woverlength-strings is implied by -pedantic.
SECP_TRY_APPEND_CFLAGS([-Wall], $1) # GCC >= 2.95 and probably many other compilers
SECP_TRY_APPEND_CFLAGS([-Wno-unused-function], $1) # GCC >= 3.0, -Wunused-function is implied by -Wall.
SECP_TRY_APPEND_CFLAGS([-Wextra], $1) # GCC >= 3.4, this is the newer name of -W, which we don't use because older GCCs will warn about unused functions.
SECP_TRY_APPEND_CFLAGS([-Wcast-align], $1) # GCC >= 2.95
SECP_TRY_APPEND_CFLAGS([-Wcast-align=strict], $1) # GCC >= 8.0
SECP_TRY_APPEND_CFLAGS([-Wconditional-uninitialized], $1) # Clang >= 3.0 only
SECP_TRY_APPEND_CFLAGS([-Wreserved-identifier], $1) # Clang >= 13.0 only
SECP_TRY_APPEND_CFLAGS([-fvisibility=hidden], $1) # GCC >= 4.0
CFLAGS="$SECP_TRY_APPEND_DEFAULT_CFLAGS_saved_CFLAGS"
fi
# MSVC
# Assume MSVC if we're building for Windows but not with GCC or compatible;
# libtool makes the same assumption internally.
# Note that "/opt" and "-opt" are equivalent for MSVC; we use "-opt" because "/opt" looks like a path.
if test x"$GCC" != x"yes" && test x"$build_windows" = x"yes"; then
SECP_TRY_APPEND_CFLAGS([-W2 -wd4146], $1) # Moderate warning level, disable warning C4146 "unary minus operator applied to unsigned type, result still unsigned"
# We pass -ignore:4217 to the MSVC linker to suppress warning 4217 when
# importing variables from a statically linked secp256k1.
# (See the libtool manual, section "Windows DLLs" for background.)
# Unfortunately, libtool tries to be too clever and strips "-Xlinker arg"
# into "arg", so this will be " -Xlinker -ignore:4217" after stripping.
LDFLAGS="-Xlinker -Xlinker -Xlinker -ignore:4217 $LDFLAGS"
fi
])
SECP_TRY_APPEND_DEFAULT_CFLAGS(SECP_CFLAGS)
###
### Define config arguments
###
# In dev mode, we enable all binaries and modules by default but individual options can still be overridden explicitly.
# Check for dev mode first because SECP_SET_DEFAULT needs enable_dev_mode set.
AC_ARG_ENABLE(dev_mode, [], [],
[enable_dev_mode=no])
AC_ARG_ENABLE(benchmark,
AS_HELP_STRING([--enable-benchmark],[compile benchmark [default=yes]]), [],
[SECP_SET_DEFAULT([enable_benchmark], [yes], [yes])])
AC_ARG_ENABLE(coverage,
AS_HELP_STRING([--enable-coverage],[enable compiler flags to support kcov coverage analysis [default=no]]), [],
[SECP_SET_DEFAULT([enable_coverage], [no], [no])])
AC_ARG_ENABLE(tests,
AS_HELP_STRING([--enable-tests],[compile tests [default=yes]]), [],
[SECP_SET_DEFAULT([enable_tests], [yes], [yes])])
AC_ARG_ENABLE(ctime_tests,
AS_HELP_STRING([--enable-ctime-tests],[compile constant-time tests [default=yes if valgrind enabled]]), [],
[SECP_SET_DEFAULT([enable_ctime_tests], [auto], [auto])])
AC_ARG_ENABLE(experimental,
AS_HELP_STRING([--enable-experimental],[allow experimental configure options [default=no]]), [],
[SECP_SET_DEFAULT([enable_experimental], [no], [yes])])
AC_ARG_ENABLE(exhaustive_tests,
AS_HELP_STRING([--enable-exhaustive-tests],[compile exhaustive tests [default=yes]]), [],
[SECP_SET_DEFAULT([enable_exhaustive_tests], [yes], [yes])])
AC_ARG_ENABLE(examples,
AS_HELP_STRING([--enable-examples],[compile the examples [default=no]]), [],
[SECP_SET_DEFAULT([enable_examples], [no], [yes])])
AC_ARG_ENABLE(module_ecdh,
AS_HELP_STRING([--enable-module-ecdh],[enable ECDH module [default=yes]]), [],
[SECP_SET_DEFAULT([enable_module_ecdh], [yes], [yes])])
AC_ARG_ENABLE(module_recovery,
AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module [default=no]]), [],
[SECP_SET_DEFAULT([enable_module_recovery], [no], [yes])])
AC_ARG_ENABLE(module_extrakeys,
AS_HELP_STRING([--enable-module-extrakeys],[enable extrakeys module [default=yes]]), [],
[SECP_SET_DEFAULT([enable_module_extrakeys], [yes], [yes])])
AC_ARG_ENABLE(module_schnorrsig,
AS_HELP_STRING([--enable-module-schnorrsig],[enable schnorrsig module [default=yes]]), [],
[SECP_SET_DEFAULT([enable_module_schnorrsig], [yes], [yes])])
AC_ARG_ENABLE(external_default_callbacks,
AS_HELP_STRING([--enable-external-default-callbacks],[enable external default callback functions [default=no]]), [],
[SECP_SET_DEFAULT([enable_external_default_callbacks], [no], [no])])
# Test-only override of the (autodetected by the C code) "widemul" setting.
# Legal values are:
# * int64 (for [u]int64_t),
# * int128 (for [unsigned] __int128),
# * int128_struct (for int128 implemented as a structure),
# * and auto (the default).
AC_ARG_WITH([test-override-wide-multiply], [] ,[set_widemul=$withval], [set_widemul=auto])
AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm32|no|auto],
[assembly optimizations to use (experimental: arm32) [default=auto]])],[req_asm=$withval], [req_asm=auto])
AC_ARG_WITH([ecmult-window], [AS_HELP_STRING([--with-ecmult-window=SIZE|auto],
[window size for ecmult precomputation for verification, specified as integer in range [2..24].]
[Larger values result in possibly better performance at the cost of an exponentially larger precomputed table.]
[The table will store 2^(SIZE-1) * 64 bytes of data but can be larger in memory due to platform-specific padding and alignment.]
[A window size larger than 15 will require you delete the prebuilt precomputed_ecmult.c file so that it can be rebuilt.]
[For very large window sizes, use "make -j 1" to reduce memory use during compilation.]
["auto" is a reasonable setting for desktop machines (currently 15). [default=auto]]
)],
[req_ecmult_window=$withval], [req_ecmult_window=auto])
AC_ARG_WITH([ecmult-gen-precision], [AS_HELP_STRING([--with-ecmult-gen-precision=2|4|8|auto],
[Precision bits to tune the precomputed table size for signing.]
[The size of the table is 32kB for 2 bits, 64kB for 4 bits, 512kB for 8 bits of precision.]
[A larger table size usually results in possible faster signing.]
["auto" is a reasonable setting for desktop machines (currently 4). [default=auto]]
)],
[req_ecmult_gen_precision=$withval], [req_ecmult_gen_precision=auto])
AC_ARG_WITH([valgrind], [AS_HELP_STRING([--with-valgrind=yes|no|auto],
[Build with extra checks for running inside Valgrind [default=auto]]
)],
[req_valgrind=$withval], [req_valgrind=auto])
###
### Handle config options (except for modules)
###
if test x"$req_valgrind" = x"no"; then
enable_valgrind=no
else
SECP_VALGRIND_CHECK
if test x"$has_valgrind" != x"yes"; then
if test x"$req_valgrind" = x"yes"; then
AC_MSG_ERROR([Valgrind support explicitly requested but valgrind/memcheck.h header not available])
fi
enable_valgrind=no
else
enable_valgrind=yes
fi
fi
if test x"$enable_ctime_tests" = x"auto"; then
enable_ctime_tests=$enable_valgrind
fi
if test x"$enable_coverage" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DCOVERAGE=1"
SECP_CFLAGS="-O0 --coverage $SECP_CFLAGS"
# If coverage is enabled, and the user has not overridden CFLAGS,
# override Autoconf's value "-g -O2" with "-g". Otherwise we'd end up
# with "-O0 --coverage -g -O2".
if test "$CFLAGS_overridden" = "no"; then
CFLAGS="-g"
fi
LDFLAGS="--coverage $LDFLAGS"
else
# Most likely the CFLAGS already contain -O2 because that is autoconf's default.
# We still add it here because passing it twice is not an issue, and handling
# this case would just add unnecessary complexity (see #896).
SECP_CFLAGS="-O2 $SECP_CFLAGS"
fi
if test x"$req_asm" = x"auto"; then
SECP_X86_64_ASM_CHECK
if test x"$has_x86_64_asm" = x"yes"; then
set_asm=x86_64
fi
if test x"$set_asm" = x; then
set_asm=no
fi
else
set_asm=$req_asm
case $set_asm in
x86_64)
SECP_X86_64_ASM_CHECK
if test x"$has_x86_64_asm" != x"yes"; then
AC_MSG_ERROR([x86_64 assembly optimization requested but not available])
fi
;;
arm32)
SECP_ARM32_ASM_CHECK
if test x"$has_arm32_asm" != x"yes"; then
AC_MSG_ERROR([ARM32 assembly optimization requested but not available])
fi
;;
no)
;;
*)
AC_MSG_ERROR([invalid assembly optimization selection])
;;
esac
fi
# Select assembly optimization
enable_external_asm=no
case $set_asm in
x86_64)
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_ASM_X86_64=1"
;;
arm32)
enable_external_asm=yes
;;
no)
;;
*)
AC_MSG_ERROR([invalid assembly optimizations])
;;
esac
if test x"$enable_external_asm" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_EXTERNAL_ASM=1"
fi
# Select wide multiplication implementation
case $set_widemul in
int128_struct)
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_FORCE_WIDEMUL_INT128_STRUCT=1"
;;
int128)
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_FORCE_WIDEMUL_INT128=1"
;;
int64)
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_FORCE_WIDEMUL_INT64=1"
;;
auto)
;;
*)
AC_MSG_ERROR([invalid wide multiplication implementation])
;;
esac
# Set ecmult window size
if test x"$req_ecmult_window" = x"auto"; then
set_ecmult_window=15
else
set_ecmult_window=$req_ecmult_window
fi
error_window_size=['window size for ecmult precomputation not an integer in range [2..24] or "auto"']
case $set_ecmult_window in
''|*[[!0-9]]*)
# no valid integer
AC_MSG_ERROR($error_window_size)
;;
*)
if test "$set_ecmult_window" -lt 2 -o "$set_ecmult_window" -gt 24 ; then
# not in range
AC_MSG_ERROR($error_window_size)
fi
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DECMULT_WINDOW_SIZE=$set_ecmult_window"
;;
esac
# Set ecmult gen precision
if test x"$req_ecmult_gen_precision" = x"auto"; then
set_ecmult_gen_precision=4
else
set_ecmult_gen_precision=$req_ecmult_gen_precision
fi
case $set_ecmult_gen_precision in
2|4|8)
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DECMULT_GEN_PREC_BITS=$set_ecmult_gen_precision"
;;
*)
AC_MSG_ERROR(['ecmult gen precision not 2, 4, 8 or "auto"'])
;;
esac
if test x"$enable_valgrind" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES $VALGRIND_CPPFLAGS -DVALGRIND"
fi
# Add -Werror and similar flags passed from the outside (for testing, e.g., in CI).
# We don't want to set the user variable CFLAGS in CI because this would disable
# autoconf's logic for setting default CFLAGS, which we would like to test in CI.
SECP_CFLAGS="$SECP_CFLAGS $WERROR_CFLAGS"
###
### Handle module options
###
if test x"$enable_module_ecdh" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DENABLE_MODULE_ECDH=1"
fi
if test x"$enable_module_recovery" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DENABLE_MODULE_RECOVERY=1"
fi
if test x"$enable_module_schnorrsig" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DENABLE_MODULE_SCHNORRSIG=1"
enable_module_extrakeys=yes
fi
# Test if extrakeys is set after the schnorrsig module to allow the schnorrsig
# module to set enable_module_extrakeys=yes
if test x"$enable_module_extrakeys" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DENABLE_MODULE_EXTRAKEYS=1"
fi
if test x"$enable_external_default_callbacks" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_EXTERNAL_DEFAULT_CALLBACKS=1"
fi
###
### Check for --enable-experimental if necessary
###
if test x"$enable_experimental" = x"yes"; then
AC_MSG_NOTICE([******])
AC_MSG_NOTICE([WARNING: experimental build])
AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be safe for production use.])
AC_MSG_NOTICE([******])
else
if test x"$set_asm" = x"arm32"; then
AC_MSG_ERROR([ARM32 assembly optimization is experimental. Use --enable-experimental to allow.])
fi
fi
###
### Generate output
###
AC_CONFIG_FILES([Makefile libsecp256k1.pc])
AC_SUBST(SECP_CFLAGS)
AC_SUBST(SECP_CONFIG_DEFINES)
AM_CONDITIONAL([ENABLE_COVERAGE], [test x"$enable_coverage" = x"yes"])
AM_CONDITIONAL([USE_TESTS], [test x"$enable_tests" != x"no"])
AM_CONDITIONAL([USE_CTIME_TESTS], [test x"$enable_ctime_tests" = x"yes"])
AM_CONDITIONAL([USE_EXHAUSTIVE_TESTS], [test x"$enable_exhaustive_tests" != x"no"])
AM_CONDITIONAL([USE_EXAMPLES], [test x"$enable_examples" != x"no"])
AM_CONDITIONAL([USE_BENCHMARK], [test x"$enable_benchmark" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_EXTRAKEYS], [test x"$enable_module_extrakeys" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"])
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$enable_external_asm" = x"yes"])
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm32"])
AM_CONDITIONAL([BUILD_WINDOWS], [test "$build_windows" = "yes"])
AC_SUBST(LIB_VERSION_CURRENT, _LIB_VERSION_CURRENT)
AC_SUBST(LIB_VERSION_REVISION, _LIB_VERSION_REVISION)
AC_SUBST(LIB_VERSION_AGE, _LIB_VERSION_AGE)
AC_OUTPUT
echo
echo "Build Options:"
echo " with external callbacks = $enable_external_default_callbacks"
echo " with benchmarks = $enable_benchmark"
echo " with tests = $enable_tests"
echo " with ctime tests = $enable_ctime_tests"
echo " with coverage = $enable_coverage"
echo " with examples = $enable_examples"
echo " module ecdh = $enable_module_ecdh"
echo " module recovery = $enable_module_recovery"
echo " module extrakeys = $enable_module_extrakeys"
echo " module schnorrsig = $enable_module_schnorrsig"
echo
echo " asm = $set_asm"
echo " ecmult window size = $set_ecmult_window"
echo " ecmult gen prec. bits = $set_ecmult_gen_precision"
# Hide test-only options unless they're used.
if test x"$set_widemul" != xauto; then
echo " wide multiplication = $set_widemul"
fi
echo
echo " valgrind = $enable_valgrind"
echo " CC = $CC"
echo " CPPFLAGS = $CPPFLAGS"
echo " SECP_CFLAGS = $SECP_CFLAGS"
echo " CFLAGS = $CFLAGS"
echo " LDFLAGS = $LDFLAGS"

View File

@ -0,0 +1,148 @@
/***********************************************************************
* Copyright (c) 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#include <string.h>
#include "lax_der_parsing.h"
int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
size_t rpos, rlen, spos, slen;
size_t pos = 0;
size_t lenbyte;
unsigned char tmpsig[64] = {0};
int overflow = 0;
/* Hack to initialize sig with a correctly-parsed but invalid signature. */
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
/* Sequence tag byte */
if (pos == inputlen || input[pos] != 0x30) {
return 0;
}
pos++;
/* Sequence length bytes */
if (pos == inputlen) {
return 0;
}
lenbyte = input[pos++];
if (lenbyte & 0x80) {
lenbyte -= 0x80;
if (lenbyte > inputlen - pos) {
return 0;
}
pos += lenbyte;
}
/* Integer tag byte for R */
if (pos == inputlen || input[pos] != 0x02) {
return 0;
}
pos++;
/* Integer length for R */
if (pos == inputlen) {
return 0;
}
lenbyte = input[pos++];
if (lenbyte & 0x80) {
lenbyte -= 0x80;
if (lenbyte > inputlen - pos) {
return 0;
}
while (lenbyte > 0 && input[pos] == 0) {
pos++;
lenbyte--;
}
if (lenbyte >= sizeof(size_t)) {
return 0;
}
rlen = 0;
while (lenbyte > 0) {
rlen = (rlen << 8) + input[pos];
pos++;
lenbyte--;
}
} else {
rlen = lenbyte;
}
if (rlen > inputlen - pos) {
return 0;
}
rpos = pos;
pos += rlen;
/* Integer tag byte for S */
if (pos == inputlen || input[pos] != 0x02) {
return 0;
}
pos++;
/* Integer length for S */
if (pos == inputlen) {
return 0;
}
lenbyte = input[pos++];
if (lenbyte & 0x80) {
lenbyte -= 0x80;
if (lenbyte > inputlen - pos) {
return 0;
}
while (lenbyte > 0 && input[pos] == 0) {
pos++;
lenbyte--;
}
if (lenbyte >= sizeof(size_t)) {
return 0;
}
slen = 0;
while (lenbyte > 0) {
slen = (slen << 8) + input[pos];
pos++;
lenbyte--;
}
} else {
slen = lenbyte;
}
if (slen > inputlen - pos) {
return 0;
}
spos = pos;
/* Ignore leading zeroes in R */
while (rlen > 0 && input[rpos] == 0) {
rlen--;
rpos++;
}
/* Copy R value */
if (rlen > 32) {
overflow = 1;
} else if (rlen) {
memcpy(tmpsig + 32 - rlen, input + rpos, rlen);
}
/* Ignore leading zeroes in S */
while (slen > 0 && input[spos] == 0) {
slen--;
spos++;
}
/* Copy S value */
if (slen > 32) {
overflow = 1;
} else if (slen) {
memcpy(tmpsig + 64 - slen, input + spos, slen);
}
if (!overflow) {
overflow = !secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
}
if (overflow) {
memset(tmpsig, 0, 64);
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
}
return 1;
}

View File

@ -0,0 +1,97 @@
/***********************************************************************
* Copyright (c) 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
/****
* Please do not link this file directly. It is not part of the libsecp256k1
* project and does not promise any stability in its API, functionality or
* presence. Projects which use this code should instead copy this header
* and its accompanying .c file directly into their codebase.
****/
/* This file defines a function that parses DER with various errors and
* violations. This is not a part of the library itself, because the allowed
* violations are chosen arbitrarily and do not follow or establish any
* standard.
*
* In many places it matters that different implementations do not only accept
* the same set of valid signatures, but also reject the same set of signatures.
* The only means to accomplish that is by strictly obeying a standard, and not
* accepting anything else.
*
* Nonetheless, sometimes there is a need for compatibility with systems that
* use signatures which do not strictly obey DER. The snippet below shows how
* certain violations are easily supported. You may need to adapt it.
*
* Do not use this for new systems. Use well-defined DER or compact signatures
* instead if you have the choice (see secp256k1_ecdsa_signature_parse_der and
* secp256k1_ecdsa_signature_parse_compact).
*
* The supported violations are:
* - All numbers are parsed as nonnegative integers, even though X.609-0207
* section 8.3.3 specifies that integers are always encoded as two's
* complement.
* - Integers can have length 0, even though section 8.3.1 says they can't.
* - Integers with overly long padding are accepted, violation section
* 8.3.2.
* - 127-byte long length descriptors are accepted, even though section
* 8.1.3.5.c says that they are not.
* - Trailing garbage data inside or after the signature is ignored.
* - The length descriptor of the sequence is ignored.
*
* Compared to for example OpenSSL, many violations are NOT supported:
* - Using overly long tag descriptors for the sequence or integers inside,
* violating section 8.1.2.2.
* - Encoding primitive integers as constructed values, violating section
* 8.3.1.
*/
#ifndef SECP256K1_CONTRIB_LAX_DER_PARSING_H
#define SECP256K1_CONTRIB_LAX_DER_PARSING_H
/* #include secp256k1.h only when it hasn't been included yet.
This enables this file to be #included directly in other project
files (such as tests.c) without the need to set an explicit -I flag,
which would be necessary to locate secp256k1.h. */
#ifndef SECP256K1_H
#include <secp256k1.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/** Parse a signature in "lax DER" format
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input: a pointer to the signature to be parsed
* inputlen: the length of the array pointed to be input
*
* This function will accept any valid DER encoded signature, even if the
* encoded numbers are out of range. In addition, it will accept signatures
* which violate the DER spec in various ways. Its purpose is to allow
* validation of the Bitcoin blockchain, which includes non-DER signatures
* from before the network rules were updated to enforce DER. Note that
* the set of supported violations is a strict subset of what OpenSSL will
* accept.
*
* After the call, sig will always be initialized. If parsing failed or the
* encoded numbers are out of range, signature validation with it is
* guaranteed to fail for every message and public key.
*/
int ecdsa_signature_parse_der_lax(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_CONTRIB_LAX_DER_PARSING_H */

View File

@ -0,0 +1,112 @@
/***********************************************************************
* Copyright (c) 2014, 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#include <string.h>
#include "lax_der_privatekey_parsing.h"
int ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *privkey, size_t privkeylen) {
const unsigned char *end = privkey + privkeylen;
int lenb = 0;
int len = 0;
memset(out32, 0, 32);
/* sequence header */
if (end < privkey+1 || *privkey != 0x30) {
return 0;
}
privkey++;
/* sequence length constructor */
if (end < privkey+1 || !(*privkey & 0x80)) {
return 0;
}
lenb = *privkey & ~0x80; privkey++;
if (lenb < 1 || lenb > 2) {
return 0;
}
if (end < privkey+lenb) {
return 0;
}
/* sequence length */
len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0);
privkey += lenb;
if (end < privkey+len) {
return 0;
}
/* sequence element 0: version number (=1) */
if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01) {
return 0;
}
privkey += 3;
/* sequence element 1: octet string, up to 32 bytes */
if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1]) {
return 0;
}
if (privkey[1]) memcpy(out32 + 32 - privkey[1], privkey + 2, privkey[1]);
if (!secp256k1_ec_seckey_verify(ctx, out32)) {
memset(out32, 0, 32);
return 0;
}
return 1;
}
int ec_privkey_export_der(const secp256k1_context *ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *key32, int compressed) {
secp256k1_pubkey pubkey;
size_t pubkeylen = 0;
if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
*privkeylen = 0;
return 0;
}
if (compressed) {
static const unsigned char begin[] = {
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
memcpy(ptr, key32, 32); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
pubkeylen = 33;
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
ptr += pubkeylen;
*privkeylen = ptr - privkey;
} else {
static const unsigned char begin[] = {
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
memcpy(ptr, key32, 32); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
pubkeylen = 65;
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
ptr += pubkeylen;
*privkeylen = ptr - privkey;
}
return 1;
}

View File

@ -0,0 +1,95 @@
/***********************************************************************
* Copyright (c) 2014, 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
/****
* Please do not link this file directly. It is not part of the libsecp256k1
* project and does not promise any stability in its API, functionality or
* presence. Projects which use this code should instead copy this header
* and its accompanying .c file directly into their codebase.
****/
/* This file contains code snippets that parse DER private keys with
* various errors and violations. This is not a part of the library
* itself, because the allowed violations are chosen arbitrarily and
* do not follow or establish any standard.
*
* It also contains code to serialize private keys in a compatible
* manner.
*
* These functions are meant for compatibility with applications
* that require BER encoded keys. When working with secp256k1-specific
* code, the simple 32-byte private keys normally used by the
* library are sufficient.
*/
#ifndef SECP256K1_CONTRIB_BER_PRIVATEKEY_H
#define SECP256K1_CONTRIB_BER_PRIVATEKEY_H
/* #include secp256k1.h only when it hasn't been included yet.
This enables this file to be #included directly in other project
files (such as tests.c) without the need to set an explicit -I flag,
which would be necessary to locate secp256k1.h. */
#ifndef SECP256K1_H
#include <secp256k1.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/** Export a private key in DER format.
*
* Returns: 1 if the private key was valid.
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: privkey: pointer to an array for storing the private key in BER.
* Should have space for 279 bytes, and cannot be NULL.
* privkeylen: Pointer to an int where the length of the private key in
* privkey will be stored.
* In: seckey: pointer to a 32-byte secret key to export.
* compressed: 1 if the key should be exported in
* compressed format, 0 otherwise
*
* This function is purely meant for compatibility with applications that
* require BER encoded keys. When working with secp256k1-specific code, the
* simple 32-byte private keys are sufficient.
*
* Note that this function does not guarantee correct DER output. It is
* guaranteed to be parsable by secp256k1_ec_privkey_import_der
*/
SECP256K1_WARN_UNUSED_RESULT int ec_privkey_export_der(
const secp256k1_context* ctx,
unsigned char *privkey,
size_t *privkeylen,
const unsigned char *seckey,
int compressed
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Import a private key in DER format.
* Returns: 1 if a private key was extracted.
* Args: ctx: pointer to a context object (cannot be NULL).
* Out: seckey: pointer to a 32-byte array for storing the private key.
* (cannot be NULL).
* In: privkey: pointer to a private key in DER format (cannot be NULL).
* privkeylen: length of the DER private key pointed to be privkey.
*
* This function will accept more than just strict DER, and even allow some BER
* violations. The public key stored inside the DER-encoded private key is not
* verified for correctness, nor are the curve parameters. Use this function
* only if you know in advance it is supposed to contain a secp256k1 private
* key.
*/
SECP256K1_WARN_UNUSED_RESULT int ec_privkey_import_der(
const secp256k1_context* ctx,
unsigned char *seckey,
const unsigned char *privkey,
size_t privkeylen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_CONTRIB_BER_PRIVATEKEY_H */

View File

@ -0,0 +1,61 @@
# Release Process
This document outlines the process for releasing versions of the form `$MAJOR.$MINOR.$PATCH`.
We distinguish between two types of releases: *regular* and *maintenance* releases.
Regular releases are releases of a new major or minor version as well as patches of the most recent release.
Maintenance releases, on the other hand, are required for patches of older releases.
You should coordinate with the other maintainers on the release date, if possible.
This date will be part of the release entry in [CHANGELOG.md](../CHANGELOG.md) and it should match the dates of the remaining steps in the release process (including the date of the tag and the GitHub release).
It is best if the maintainers are present during the release, so they can help ensure that the process is followed correctly and, in the case of a regular release, they are aware that they should not modify the master branch between merging the PR in step 1 and the PR in step 3.
This process also assumes that there will be no minor releases for old major releases.
## Regular release
1. Open a PR to the master branch with a commit (using message `"release: prepare for $MAJOR.$MINOR.$PATCH"`, for example) that
* finalizes the release notes in [CHANGELOG.md](../CHANGELOG.md) (make sure to include an entry for `### ABI Compatibility`),
* sets `_PKG_VERSION_IS_RELEASE` to `true` in `configure.ac`, and
* if this is not a patch release
* updates `_PKG_VERSION_*` and `_LIB_VERSION_*` in `configure.ac` and
* updates `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_*` in `CMakeLists.txt`.
2. After the PR is merged, tag the commit and push it:
```
RELEASE_COMMIT=<merge commit of step 1>
git tag -s v$MAJOR.$MINOR.$PATCH -m "libsecp256k1 $MAJOR.$MINOR.$PATCH" $RELEASE_COMMIT
git push git@github.com:bitcoin-core/secp256k1.git v$MAJOR.$MINOR.$PATCH
```
3. Open a PR to the master branch with a commit (using message `"release cleanup: bump version after $MAJOR.$MINOR.$PATCH"`, for example) that
* sets `_PKG_VERSION_IS_RELEASE` to `false` and increments `_PKG_VERSION_PATCH` and `_LIB_VERSION_REVISION` in `configure.ac`, and
* increments the `$PATCH` component of `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_REVISION` in `CMakeLists.txt`.
If other maintainers are not present to approve the PR, it can be merged without ACKs.
4. Create a new GitHub release with a link to the corresponding entry in [CHANGELOG.md](../CHANGELOG.md).
## Maintenance release
Note that bugfixes only need to be backported to releases for which no compatible release without the bug exists.
1. If `$PATCH = 1`, create maintenance branch `$MAJOR.$MINOR`:
```
git checkout -b $MAJOR.$MINOR v$MAJOR.$MINOR.0
git push git@github.com:bitcoin-core/secp256k1.git $MAJOR.$MINOR
```
2. Open a pull request to the `$MAJOR.$MINOR` branch that
* includes the bugfixes,
* finalizes the release notes,
* increments `_PKG_VERSION_PATCH` and `_LIB_VERSION_REVISION` in `configure.ac`
and the `$PATCH` component of `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_REVISION` in `CMakeLists.txt`
(with commit message `"release: bump versions for $MAJOR.$MINOR.$PATCH"`, for example).
3. After the PRs are merged, update the release branch and tag the commit:
```
git checkout $MAJOR.$MINOR && git pull
git tag -s v$MAJOR.$MINOR.$PATCH -m "libsecp256k1 $MAJOR.$MINOR.$PATCH"
```
4. Push tag:
```
git push git@github.com:bitcoin-core/secp256k1.git v$MAJOR.$MINOR.$PATCH
```
5. Create a new GitHub release with a link to the corresponding entry in [CHANGELOG.md](../CHANGELOG.md).
6. Open PR to the master branch that includes a commit (with commit message `"release notes: add $MAJOR.$MINOR.$PATCH"`, for example) that adds release notes to [CHANGELOG.md](../CHANGELOG.md).

View File

@ -0,0 +1,819 @@
# The safegcd implementation in libsecp256k1 explained
This document explains the modular inverse and Jacobi symbol implementations in the `src/modinv*.h` files.
It is based on the paper
["Fast constant-time gcd computation and modular inversion"](https://gcd.cr.yp.to/papers.html#safegcd)
by Daniel J. Bernstein and Bo-Yin Yang. The references below are for the Date: 2019.04.13 version.
The actual implementation is in C of course, but for demonstration purposes Python3 is used here.
Most implementation aspects and optimizations are explained, except those that depend on the specific
number representation used in the C code.
## 1. Computing the Greatest Common Divisor (GCD) using divsteps
The algorithm from the paper (section 11), at a very high level, is this:
```python
def gcd(f, g):
"""Compute the GCD of an odd integer f and another integer g."""
assert f & 1 # require f to be odd
delta = 1 # additional state variable
while g != 0:
assert f & 1 # f will be odd in every iteration
if delta > 0 and g & 1:
delta, f, g = 1 - delta, g, (g - f) // 2
elif g & 1:
delta, f, g = 1 + delta, f, (g + f) // 2
else:
delta, f, g = 1 + delta, f, (g ) // 2
return abs(f)
```
It computes the greatest common divisor of an odd integer *f* and any integer *g*. Its inner loop
keeps rewriting the variables *f* and *g* alongside a state variable *&delta;* that starts at *1*, until
*g=0* is reached. At that point, *|f|* gives the GCD. Each of the transitions in the loop is called a
"division step" (referred to as divstep in what follows).
For example, *gcd(21, 14)* would be computed as:
- Start with *&delta;=1 f=21 g=14*
- Take the third branch: *&delta;=2 f=21 g=7*
- Take the first branch: *&delta;=-1 f=7 g=-7*
- Take the second branch: *&delta;=0 f=7 g=0*
- The answer *|f| = 7*.
Why it works:
- Divsteps can be decomposed into two steps (see paragraph 8.2 in the paper):
- (a) If *g* is odd, replace *(f,g)* with *(g,g-f)* or (f,g+f), resulting in an even *g*.
- (b) Replace *(f,g)* with *(f,g/2)* (where *g* is guaranteed to be even).
- Neither of those two operations change the GCD:
- For (a), assume *gcd(f,g)=c*, then it must be the case that *f=a&thinsp;c* and *g=b&thinsp;c* for some integers *a*
and *b*. As *(g,g-f)=(b&thinsp;c,(b-a)c)* and *(f,f+g)=(a&thinsp;c,(a+b)c)*, the result clearly still has
common factor *c*. Reasoning in the other direction shows that no common factor can be added by
doing so either.
- For (b), we know that *f* is odd, so *gcd(f,g)* clearly has no factor *2*, and we can remove
it from *g*.
- The algorithm will eventually converge to *g=0*. This is proven in the paper (see theorem G.3).
- It follows that eventually we find a final value *f'* for which *gcd(f,g) = gcd(f',0)*. As the
gcd of *f'* and *0* is *|f'|* by definition, that is our answer.
Compared to more [traditional GCD algorithms](https://en.wikipedia.org/wiki/Euclidean_algorithm), this one has the property of only ever looking at
the low-order bits of the variables to decide the next steps, and being easy to make
constant-time (in more low-level languages than Python). The *&delta;* parameter is necessary to
guide the algorithm towards shrinking the numbers' magnitudes without explicitly needing to look
at high order bits.
Properties that will become important later:
- Performing more divsteps than needed is not a problem, as *f* does not change anymore after *g=0*.
- Only even numbers are divided by *2*. This means that when reasoning about it algebraically we
do not need to worry about rounding.
- At every point during the algorithm's execution the next *N* steps only depend on the bottom *N*
bits of *f* and *g*, and on *&delta;*.
## 2. From GCDs to modular inverses
We want an algorithm to compute the inverse *a* of *x* modulo *M*, i.e. the number a such that *a&thinsp;x=1
mod M*. This inverse only exists if the GCD of *x* and *M* is *1*, but that is always the case if *M* is
prime and *0 < x < M*. In what follows, assume that the modular inverse exists.
It turns out this inverse can be computed as a side effect of computing the GCD by keeping track
of how the internal variables can be written as linear combinations of the inputs at every step
(see the [extended Euclidean algorithm](https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm)).
Since the GCD is *1*, such an algorithm will compute numbers *a* and *b* such that a&thinsp;x + b&thinsp;M = 1*.
Taking that expression *mod M* gives *a&thinsp;x mod M = 1*, and we see that *a* is the modular inverse of *x
mod M*.
A similar approach can be used to calculate modular inverses using the divsteps-based GCD
algorithm shown above, if the modulus *M* is odd. To do so, compute *gcd(f=M,g=x)*, while keeping
track of extra variables *d* and *e*, for which at every step *d = f/x (mod M)* and *e = g/x (mod M)*.
*f/x* here means the number which multiplied with *x* gives *f mod M*. As *f* and *g* are initialized to *M*
and *x* respectively, *d* and *e* just start off being *0* (*M/x mod M = 0/x mod M = 0*) and *1* (*x/x mod M
= 1*).
```python
def div2(M, x):
"""Helper routine to compute x/2 mod M (where M is odd)."""
assert M & 1
if x & 1: # If x is odd, make it even by adding M.
x += M
# x must be even now, so a clean division by 2 is possible.
return x // 2
def modinv(M, x):
"""Compute the inverse of x mod M (given that it exists, and M is odd)."""
assert M & 1
delta, f, g, d, e = 1, M, x, 0, 1
while g != 0:
# Note that while division by two for f and g is only ever done on even inputs, this is
# not true for d and e, so we need the div2 helper function.
if delta > 0 and g & 1:
delta, f, g, d, e = 1 - delta, g, (g - f) // 2, e, div2(M, e - d)
elif g & 1:
delta, f, g, d, e = 1 + delta, f, (g + f) // 2, d, div2(M, e + d)
else:
delta, f, g, d, e = 1 + delta, f, (g ) // 2, d, div2(M, e )
# Verify that the invariants d=f/x mod M, e=g/x mod M are maintained.
assert f % M == (d * x) % M
assert g % M == (e * x) % M
assert f == 1 or f == -1 # |f| is the GCD, it must be 1
# Because of invariant d = f/x (mod M), 1/x = d/f (mod M). As |f|=1, d/f = d*f.
return (d * f) % M
```
Also note that this approach to track *d* and *e* throughout the computation to determine the inverse
is different from the paper. There (see paragraph 12.1 in the paper) a transition matrix for the
entire computation is determined (see section 3 below) and the inverse is computed from that.
The approach here avoids the need for 2x2 matrix multiplications of various sizes, and appears to
be faster at the level of optimization we're able to do in C.
## 3. Batching multiple divsteps
Every divstep can be expressed as a matrix multiplication, applying a transition matrix *(1/2 t)*
to both vectors *[f, g]* and *[d, e]* (see paragraph 8.1 in the paper):
```
t = [ u, v ]
[ q, r ]
[ out_f ] = (1/2 * t) * [ in_f ]
[ out_g ] = [ in_g ]
[ out_d ] = (1/2 * t) * [ in_d ] (mod M)
[ out_e ] [ in_e ]
```
where *(u, v, q, r)* is *(0, 2, -1, 1)*, *(2, 0, 1, 1)*, or *(2, 0, 0, 1)*, depending on which branch is
taken. As above, the resulting *f* and *g* are always integers.
Performing multiple divsteps corresponds to a multiplication with the product of all the
individual divsteps' transition matrices. As each transition matrix consists of integers
divided by *2*, the product of these matrices will consist of integers divided by *2<sup>N</sup>* (see also
theorem 9.2 in the paper). These divisions are expensive when updating *d* and *e*, so we delay
them: we compute the integer coefficients of the combined transition matrix scaled by *2<sup>N</sup>*, and
do one division by *2<sup>N</sup>* as a final step:
```python
def divsteps_n_matrix(delta, f, g):
"""Compute delta and transition matrix t after N divsteps (multiplied by 2^N)."""
u, v, q, r = 1, 0, 0, 1 # start with identity matrix
for _ in range(N):
if delta > 0 and g & 1:
delta, f, g, u, v, q, r = 1 - delta, g, (g - f) // 2, 2*q, 2*r, q-u, r-v
elif g & 1:
delta, f, g, u, v, q, r = 1 + delta, f, (g + f) // 2, 2*u, 2*v, q+u, r+v
else:
delta, f, g, u, v, q, r = 1 + delta, f, (g ) // 2, 2*u, 2*v, q , r
return delta, (u, v, q, r)
```
As the branches in the divsteps are completely determined by the bottom *N* bits of *f* and *g*, this
function to compute the transition matrix only needs to see those bottom bits. Furthermore all
intermediate results and outputs fit in *(N+1)*-bit numbers (unsigned for *f* and *g*; signed for *u*, *v*,
*q*, and *r*) (see also paragraph 8.3 in the paper). This means that an implementation using 64-bit
integers could set *N=62* and compute the full transition matrix for 62 steps at once without any
big integer arithmetic at all. This is the reason why this algorithm is efficient: it only needs
to update the full-size *f*, *g*, *d*, and *e* numbers once every *N* steps.
We still need functions to compute:
```
[ out_f ] = (1/2^N * [ u, v ]) * [ in_f ]
[ out_g ] ( [ q, r ]) [ in_g ]
[ out_d ] = (1/2^N * [ u, v ]) * [ in_d ] (mod M)
[ out_e ] ( [ q, r ]) [ in_e ]
```
Because the divsteps transformation only ever divides even numbers by two, the result of *t&thinsp;[f,g]* is always even. When *t* is a composition of *N* divsteps, it follows that the resulting *f*
and *g* will be multiple of *2<sup>N</sup>*, and division by *2<sup>N</sup>* is simply shifting them down:
```python
def update_fg(f, g, t):
"""Multiply matrix t/2^N with [f, g]."""
u, v, q, r = t
cf, cg = u*f + v*g, q*f + r*g
# (t / 2^N) should cleanly apply to [f,g] so the result of t*[f,g] should have N zero
# bottom bits.
assert cf % 2**N == 0
assert cg % 2**N == 0
return cf >> N, cg >> N
```
The same is not true for *d* and *e*, and we need an equivalent of the `div2` function for division by *2<sup>N</sup> mod M*.
This is easy if we have precomputed *1/M mod 2<sup>N</sup>* (which always exists for odd *M*):
```python
def div2n(M, Mi, x):
"""Compute x/2^N mod M, given Mi = 1/M mod 2^N."""
assert (M * Mi) % 2**N == 1
# Find a factor m such that m*M has the same bottom N bits as x. We want:
# (m * M) mod 2^N = x mod 2^N
# <=> m mod 2^N = (x / M) mod 2^N
# <=> m mod 2^N = (x * Mi) mod 2^N
m = (Mi * x) % 2**N
# Subtract that multiple from x, cancelling its bottom N bits.
x -= m * M
# Now a clean division by 2^N is possible.
assert x % 2**N == 0
return (x >> N) % M
def update_de(d, e, t, M, Mi):
"""Multiply matrix t/2^N with [d, e], modulo M."""
u, v, q, r = t
cd, ce = u*d + v*e, q*d + r*e
return div2n(M, Mi, cd), div2n(M, Mi, ce)
```
With all of those, we can write a version of `modinv` that performs *N* divsteps at once:
```python3
def modinv(M, Mi, x):
"""Compute the modular inverse of x mod M, given Mi=1/M mod 2^N."""
assert M & 1
delta, f, g, d, e = 1, M, x, 0, 1
while g != 0:
# Compute the delta and transition matrix t for the next N divsteps (this only needs
# (N+1)-bit signed integer arithmetic).
delta, t = divsteps_n_matrix(delta, f % 2**N, g % 2**N)
# Apply the transition matrix t to [f, g]:
f, g = update_fg(f, g, t)
# Apply the transition matrix t to [d, e]:
d, e = update_de(d, e, t, M, Mi)
return (d * f) % M
```
This means that in practice we'll always perform a multiple of *N* divsteps. This is not a problem
because once *g=0*, further divsteps do not affect *f*, *g*, *d*, or *e* anymore (only *&delta;* keeps
increasing). For variable time code such excess iterations will be mostly optimized away in later
sections.
## 4. Avoiding modulus operations
So far, there are two places where we compute a remainder of big numbers modulo *M*: at the end of
`div2n` in every `update_de`, and at the very end of `modinv` after potentially negating *d* due to the
sign of *f*. These are relatively expensive operations when done generically.
To deal with the modulus operation in `div2n`, we simply stop requiring *d* and *e* to be in range
*[0,M)* all the time. Let's start by inlining `div2n` into `update_de`, and dropping the modulus
operation at the end:
```python
def update_de(d, e, t, M, Mi):
"""Multiply matrix t/2^N with [d, e] mod M, given Mi=1/M mod 2^N."""
u, v, q, r = t
cd, ce = u*d + v*e, q*d + r*e
# Cancel out bottom N bits of cd and ce.
md = -((Mi * cd) % 2**N)
me = -((Mi * ce) % 2**N)
cd += md * M
ce += me * M
# And cleanly divide by 2**N.
return cd >> N, ce >> N
```
Let's look at bounds on the ranges of these numbers. It can be shown that *|u|+|v|* and *|q|+|r|*
never exceed *2<sup>N</sup>* (see paragraph 8.3 in the paper), and thus a multiplication with *t* will have
outputs whose absolute values are at most *2<sup>N</sup>* times the maximum absolute input value. In case the
inputs *d* and *e* are in *(-M,M)*, which is certainly true for the initial values *d=0* and *e=1* assuming
*M > 1*, the multiplication results in numbers in range *(-2<sup>N</sup>M,2<sup>N</sup>M)*. Subtracting less than *2<sup>N</sup>*
times *M* to cancel out *N* bits brings that up to *(-2<sup>N+1</sup>M,2<sup>N</sup>M)*, and
dividing by *2<sup>N</sup>* at the end takes it to *(-2M,M)*. Another application of `update_de` would take that
to *(-3M,2M)*, and so forth. This progressive expansion of the variables' ranges can be
counteracted by incrementing *d* and *e* by *M* whenever they're negative:
```python
...
if d < 0:
d += M
if e < 0:
e += M
cd, ce = u*d + v*e, q*d + r*e
# Cancel out bottom N bits of cd and ce.
...
```
With inputs in *(-2M,M)*, they will first be shifted into range *(-M,M)*, which means that the
output will again be in *(-2M,M)*, and this remains the case regardless of how many `update_de`
invocations there are. In what follows, we will try to make this more efficient.
Note that increasing *d* by *M* is equal to incrementing *cd* by *u&thinsp;M* and *ce* by *q&thinsp;M*. Similarly,
increasing *e* by *M* is equal to incrementing *cd* by *v&thinsp;M* and *ce* by *r&thinsp;M*. So we could instead write:
```python
...
cd, ce = u*d + v*e, q*d + r*e
# Perform the equivalent of incrementing d, e by M when they're negative.
if d < 0:
cd += u*M
ce += q*M
if e < 0:
cd += v*M
ce += r*M
# Cancel out bottom N bits of cd and ce.
md = -((Mi * cd) % 2**N)
me = -((Mi * ce) % 2**N)
cd += md * M
ce += me * M
...
```
Now note that we have two steps of corrections to *cd* and *ce* that add multiples of *M*: this
increment, and the decrement that cancels out bottom bits. The second one depends on the first
one, but they can still be efficiently combined by only computing the bottom bits of *cd* and *ce*
at first, and using that to compute the final *md*, *me* values:
```python
def update_de(d, e, t, M, Mi):
"""Multiply matrix t/2^N with [d, e], modulo M."""
u, v, q, r = t
md, me = 0, 0
# Compute what multiples of M to add to cd and ce.
if d < 0:
md += u
me += q
if e < 0:
md += v
me += r
# Compute bottom N bits of t*[d,e] + M*[md,me].
cd, ce = (u*d + v*e + md*M) % 2**N, (q*d + r*e + me*M) % 2**N
# Correct md and me such that the bottom N bits of t*[d,e] + M*[md,me] are zero.
md -= (Mi * cd) % 2**N
me -= (Mi * ce) % 2**N
# Do the full computation.
cd, ce = u*d + v*e + md*M, q*d + r*e + me*M
# And cleanly divide by 2**N.
return cd >> N, ce >> N
```
One last optimization: we can avoid the *md&thinsp;M* and *me&thinsp;M* multiplications in the bottom bits of *cd*
and *ce* by moving them to the *md* and *me* correction:
```python
...
# Compute bottom N bits of t*[d,e].
cd, ce = (u*d + v*e) % 2**N, (q*d + r*e) % 2**N
# Correct md and me such that the bottom N bits of t*[d,e]+M*[md,me] are zero.
# Note that this is not the same as {md = (-Mi * cd) % 2**N} etc. That would also result in N
# zero bottom bits, but isn't guaranteed to be a reduction of [0,2^N) compared to the
# previous md and me values, and thus would violate our bounds analysis.
md -= (Mi*cd + md) % 2**N
me -= (Mi*ce + me) % 2**N
...
```
The resulting function takes *d* and *e* in range *(-2M,M)* as inputs, and outputs values in the same
range. That also means that the *d* value at the end of `modinv` will be in that range, while we want
a result in *[0,M)*. To do that, we need a normalization function. It's easy to integrate the
conditional negation of *d* (based on the sign of *f*) into it as well:
```python
def normalize(sign, v, M):
"""Compute sign*v mod M, where v is in range (-2*M,M); output in [0,M)."""
assert sign == 1 or sign == -1
# v in (-2*M,M)
if v < 0:
v += M
# v in (-M,M). Now multiply v with sign (which can only be 1 or -1).
if sign == -1:
v = -v
# v in (-M,M)
if v < 0:
v += M
# v in [0,M)
return v
```
And calling it in `modinv` is simply:
```python
...
return normalize(f, d, M)
```
## 5. Constant-time operation
The primary selling point of the algorithm is fast constant-time operation. What code flow still
depends on the input data so far?
- the number of iterations of the while *g &ne; 0* loop in `modinv`
- the branches inside `divsteps_n_matrix`
- the sign checks in `update_de`
- the sign checks in `normalize`
To make the while loop in `modinv` constant time it can be replaced with a constant number of
iterations. The paper proves (Theorem 11.2) that *741* divsteps are sufficient for any *256*-bit
inputs, and [safegcd-bounds](https://github.com/sipa/safegcd-bounds) shows that the slightly better bound *724* is
sufficient even. Given that every loop iteration performs *N* divsteps, it will run a total of
*&lceil;724/N&rceil;* times.
To deal with the branches in `divsteps_n_matrix` we will replace them with constant-time bitwise
operations (and hope the C compiler isn't smart enough to turn them back into branches; see
`ctime_tests.c` for automated tests that this isn't the case). To do so, observe that a
divstep can be written instead as (compare to the inner loop of `gcd` in section 1).
```python
x = -f if delta > 0 else f # set x equal to (input) -f or f
if g & 1:
g += x # set g to (input) g-f or g+f
if delta > 0:
delta = -delta
f += g # set f to (input) g (note that g was set to g-f before)
delta += 1
g >>= 1
```
To convert the above to bitwise operations, we rely on a trick to negate conditionally: per the
definition of negative numbers in two's complement, (*-v == ~v + 1*) holds for every number *v*. As
*-1* in two's complement is all *1* bits, bitflipping can be expressed as xor with *-1*. It follows
that *-v == (v ^ -1) - (-1)*. Thus, if we have a variable *c* that takes on values *0* or *-1*, then
*(v ^ c) - c* is *v* if *c=0* and *-v* if *c=-1*.
Using this we can write:
```python
x = -f if delta > 0 else f
```
in constant-time form as:
```python
c1 = (-delta) >> 63
# Conditionally negate f based on c1:
x = (f ^ c1) - c1
```
To use that trick, we need a helper mask variable *c1* that resolves the condition *&delta;>0* to *-1*
(if true) or *0* (if false). We compute *c1* using right shifting, which is equivalent to dividing by
the specified power of *2* and rounding down (in Python, and also in C under the assumption of a typical two's complement system; see
`assumptions.h` for tests that this is the case). Right shifting by *63* thus maps all
numbers in range *[-2<sup>63</sup>,0)* to *-1*, and numbers in range *[0,2<sup>63</sup>)* to *0*.
Using the facts that *x&0=0* and *x&(-1)=x* (on two's complement systems again), we can write:
```python
if g & 1:
g += x
```
as:
```python
# Compute c2=0 if g is even and c2=-1 if g is odd.
c2 = -(g & 1)
# This masks out x if g is even, and leaves x be if g is odd.
g += x & c2
```
Using the conditional negation trick again we can write:
```python
if g & 1:
if delta > 0:
delta = -delta
```
as:
```python
# Compute c3=-1 if g is odd and delta>0, and 0 otherwise.
c3 = c1 & c2
# Conditionally negate delta based on c3:
delta = (delta ^ c3) - c3
```
Finally:
```python
if g & 1:
if delta > 0:
f += g
```
becomes:
```python
f += g & c3
```
It turns out that this can be implemented more efficiently by applying the substitution
*&eta;=-&delta;*. In this representation, negating *&delta;* corresponds to negating *&eta;*, and incrementing
*&delta;* corresponds to decrementing *&eta;*. This allows us to remove the negation in the *c1*
computation:
```python
# Compute a mask c1 for eta < 0, and compute the conditional negation x of f:
c1 = eta >> 63
x = (f ^ c1) - c1
# Compute a mask c2 for odd g, and conditionally add x to g:
c2 = -(g & 1)
g += x & c2
# Compute a mask c for (eta < 0) and odd (input) g, and use it to conditionally negate eta,
# and add g to f:
c3 = c1 & c2
eta = (eta ^ c3) - c3
f += g & c3
# Incrementing delta corresponds to decrementing eta.
eta -= 1
g >>= 1
```
A variant of divsteps with better worst-case performance can be used instead: starting *&delta;* at
*1/2* instead of *1*. This reduces the worst case number of iterations to *590* for *256*-bit inputs
(which can be shown using convex hull analysis). In this case, the substitution *&zeta;=-(&delta;+1/2)*
is used instead to keep the variable integral. Incrementing *&delta;* by *1* still translates to
decrementing *&zeta;* by *1*, but negating *&delta;* now corresponds to going from *&zeta;* to *-(&zeta;+1)*, or
*~&zeta;*. Doing that conditionally based on *c3* is simply:
```python
...
c3 = c1 & c2
zeta ^= c3
...
```
By replacing the loop in `divsteps_n_matrix` with a variant of the divstep code above (extended to
also apply all *f* operations to *u*, *v* and all *g* operations to *q*, *r*), a constant-time version of
`divsteps_n_matrix` is obtained. The full code will be in section 7.
These bit fiddling tricks can also be used to make the conditional negations and additions in
`update_de` and `normalize` constant-time.
## 6. Variable-time optimizations
In section 5, we modified the `divsteps_n_matrix` function (and a few others) to be constant time.
Constant time operations are only necessary when computing modular inverses of secret data. In
other cases, it slows down calculations unnecessarily. In this section, we will construct a
faster non-constant time `divsteps_n_matrix` function.
To do so, first consider yet another way of writing the inner loop of divstep operations in
`gcd` from section 1. This decomposition is also explained in the paper in section 8.2. We use
the original version with initial *&delta;=1* and *&eta;=-&delta;* here.
```python
for _ in range(N):
if g & 1 and eta < 0:
eta, f, g = -eta, g, -f
if g & 1:
g += f
eta -= 1
g >>= 1
```
Whenever *g* is even, the loop only shifts *g* down and decreases *&eta;*. When *g* ends in multiple zero
bits, these iterations can be consolidated into one step. This requires counting the bottom zero
bits efficiently, which is possible on most platforms; it is abstracted here as the function
`count_trailing_zeros`.
```python
def count_trailing_zeros(v):
"""
When v is zero, consider all N zero bits as "trailing".
For a non-zero value v, find z such that v=(d<<z) for some odd d.
"""
if v == 0:
return N
else:
return (v & -v).bit_length() - 1
i = N # divsteps left to do
while True:
# Get rid of all bottom zeros at once. In the first iteration, g may be odd and the following
# lines have no effect (until "if eta < 0").
zeros = min(i, count_trailing_zeros(g))
eta -= zeros
g >>= zeros
i -= zeros
if i == 0:
break
# We know g is odd now
if eta < 0:
eta, f, g = -eta, g, -f
g += f
# g is even now, and the eta decrement and g shift will happen in the next loop.
```
We can now remove multiple bottom *0* bits from *g* at once, but still need a full iteration whenever
there is a bottom *1* bit. In what follows, we will get rid of multiple *1* bits simultaneously as
well.
Observe that as long as *&eta; &geq; 0*, the loop does not modify *f*. Instead, it cancels out bottom
bits of *g* and shifts them out, and decreases *&eta;* and *i* accordingly - interrupting only when *&eta;*
becomes negative, or when *i* reaches *0*. Combined, this is equivalent to adding a multiple of *f* to
*g* to cancel out multiple bottom bits, and then shifting them out.
It is easy to find what that multiple is: we want a number *w* such that *g+w&thinsp;f* has a few bottom
zero bits. If that number of bits is *L*, we want *g+w&thinsp;f mod 2<sup>L</sup> = 0*, or *w = -g/f mod 2<sup>L</sup>*. Since *f*
is odd, such a *w* exists for any *L*. *L* cannot be more than *i* steps (as we'd finish the loop before
doing more) or more than *&eta;+1* steps (as we'd run `eta, f, g = -eta, g, -f` at that point), but
apart from that, we're only limited by the complexity of computing *w*.
This code demonstrates how to cancel up to 4 bits per step:
```python
NEGINV16 = [15, 5, 3, 9, 7, 13, 11, 1] # NEGINV16[n//2] = (-n)^-1 mod 16, for odd n
i = N
while True:
zeros = min(i, count_trailing_zeros(g))
eta -= zeros
g >>= zeros
i -= zeros
if i == 0:
break
# We know g is odd now
if eta < 0:
eta, f, g = -eta, g, -f
# Compute limit on number of bits to cancel
limit = min(min(eta + 1, i), 4)
# Compute w = -g/f mod 2**limit, using the table value for -1/f mod 2**4. Note that f is
# always odd, so its inverse modulo a power of two always exists.
w = (g * NEGINV16[(f & 15) // 2]) % (2**limit)
# As w = -g/f mod (2**limit), g+w*f mod 2**limit = 0 mod 2**limit.
g += w * f
assert g % (2**limit) == 0
# The next iteration will now shift out at least limit bottom zero bits from g.
```
By using a bigger table more bits can be cancelled at once. The table can also be implemented
as a formula. Several formulas are known for computing modular inverses modulo powers of two;
some can be found in Hacker's Delight second edition by Henry S. Warren, Jr. pages 245-247.
Here we need the negated modular inverse, which is a simple transformation of those:
- Instead of a 3-bit table:
- *-f* or *f ^ 6*
- Instead of a 4-bit table:
- *1 - f(f + 1)*
- *-(f + (((f + 1) & 4) << 1))*
- For larger tables the following technique can be used: if *w=-1/f mod 2<sup>L</sup>*, then *w(w&thinsp;f+2)* is
*-1/f mod 2<sup>2L</sup>*. This allows extending the previous formulas (or tables). In particular we
have this 6-bit function (based on the 3-bit function above):
- *f(f<sup>2</sup> - 2)*
This loop, again extended to also handle *u*, *v*, *q*, and *r* alongside *f* and *g*, placed in
`divsteps_n_matrix`, gives a significantly faster, but non-constant time version.
## 7. Final Python version
All together we need the following functions:
- A way to compute the transition matrix in constant time, using the `divsteps_n_matrix` function
from section 2, but with its loop replaced by a variant of the constant-time divstep from
section 5, extended to handle *u*, *v*, *q*, *r*:
```python
def divsteps_n_matrix(zeta, f, g):
"""Compute zeta and transition matrix t after N divsteps (multiplied by 2^N)."""
u, v, q, r = 1, 0, 0, 1 # start with identity matrix
for _ in range(N):
c1 = zeta >> 63
# Compute x, y, z as conditionally-negated versions of f, u, v.
x, y, z = (f ^ c1) - c1, (u ^ c1) - c1, (v ^ c1) - c1
c2 = -(g & 1)
# Conditionally add x, y, z to g, q, r.
g, q, r = g + (x & c2), q + (y & c2), r + (z & c2)
c1 &= c2 # reusing c1 here for the earlier c3 variable
zeta = (zeta ^ c1) - 1 # inlining the unconditional zeta decrement here
# Conditionally add g, q, r to f, u, v.
f, u, v = f + (g & c1), u + (q & c1), v + (r & c1)
# When shifting g down, don't shift q, r, as we construct a transition matrix multiplied
# by 2^N. Instead, shift f's coefficients u and v up.
g, u, v = g >> 1, u << 1, v << 1
return zeta, (u, v, q, r)
```
- The functions to update *f* and *g*, and *d* and *e*, from section 2 and section 4, with the constant-time
changes to `update_de` from section 5:
```python
def update_fg(f, g, t):
"""Multiply matrix t/2^N with [f, g]."""
u, v, q, r = t
cf, cg = u*f + v*g, q*f + r*g
return cf >> N, cg >> N
def update_de(d, e, t, M, Mi):
"""Multiply matrix t/2^N with [d, e], modulo M."""
u, v, q, r = t
d_sign, e_sign = d >> 257, e >> 257
md, me = (u & d_sign) + (v & e_sign), (q & d_sign) + (r & e_sign)
cd, ce = (u*d + v*e) % 2**N, (q*d + r*e) % 2**N
md -= (Mi*cd + md) % 2**N
me -= (Mi*ce + me) % 2**N
cd, ce = u*d + v*e + M*md, q*d + r*e + M*me
return cd >> N, ce >> N
```
- The `normalize` function from section 4, made constant time as well:
```python
def normalize(sign, v, M):
"""Compute sign*v mod M, where v in (-2*M,M); output in [0,M)."""
v_sign = v >> 257
# Conditionally add M to v.
v += M & v_sign
c = (sign - 1) >> 1
# Conditionally negate v.
v = (v ^ c) - c
v_sign = v >> 257
# Conditionally add M to v again.
v += M & v_sign
return v
```
- And finally the `modinv` function too, adapted to use *&zeta;* instead of *&delta;*, and using the fixed
iteration count from section 5:
```python
def modinv(M, Mi, x):
"""Compute the modular inverse of x mod M, given Mi=1/M mod 2^N."""
zeta, f, g, d, e = -1, M, x, 0, 1
for _ in range((590 + N - 1) // N):
zeta, t = divsteps_n_matrix(zeta, f % 2**N, g % 2**N)
f, g = update_fg(f, g, t)
d, e = update_de(d, e, t, M, Mi)
return normalize(f, d, M)
```
- To get a variable time version, replace the `divsteps_n_matrix` function with one that uses the
divsteps loop from section 5, and a `modinv` version that calls it without the fixed iteration
count:
```python
NEGINV16 = [15, 5, 3, 9, 7, 13, 11, 1] # NEGINV16[n//2] = (-n)^-1 mod 16, for odd n
def divsteps_n_matrix_var(eta, f, g):
"""Compute eta and transition matrix t after N divsteps (multiplied by 2^N)."""
u, v, q, r = 1, 0, 0, 1
i = N
while True:
zeros = min(i, count_trailing_zeros(g))
eta, i = eta - zeros, i - zeros
g, u, v = g >> zeros, u << zeros, v << zeros
if i == 0:
break
if eta < 0:
eta, f, u, v, g, q, r = -eta, g, q, r, -f, -u, -v
limit = min(min(eta + 1, i), 4)
w = (g * NEGINV16[(f & 15) // 2]) % (2**limit)
g, q, r = g + w*f, q + w*u, r + w*v
return eta, (u, v, q, r)
def modinv_var(M, Mi, x):
"""Compute the modular inverse of x mod M, given Mi = 1/M mod 2^N."""
eta, f, g, d, e = -1, M, x, 0, 1
while g != 0:
eta, t = divsteps_n_matrix_var(eta, f % 2**N, g % 2**N)
f, g = update_fg(f, g, t)
d, e = update_de(d, e, t, M, Mi)
return normalize(f, d, Mi)
```
## 8. From GCDs to Jacobi symbol
We can also use a similar approach to calculate Jacobi symbol *(x | M)* by keeping track of an
extra variable *j*, for which at every step *(x | M) = j (g | f)*. As we update *f* and *g*, we
make corresponding updates to *j* using
[properties of the Jacobi symbol](https://en.wikipedia.org/wiki/Jacobi_symbol#Properties):
* *((g/2) | f)* is either *(g | f)* or *-(g | f)*, depending on the value of *f mod 8* (negating if it's *3* or *5*).
* *(f | g)* is either *(g | f)* or *-(g | f)*, depending on *f mod 4* and *g mod 4* (negating if both are *3*).
These updates depend only on the values of *f* and *g* modulo *4* or *8*, and can thus be applied
very quickly, as long as we keep track of a few additional bits of *f* and *g*. Overall, this
calculation is slightly simpler than the one for the modular inverse because we no longer need to
keep track of *d* and *e*.
However, one difficulty of this approach is that the Jacobi symbol *(a | n)* is only defined for
positive odd integers *n*, whereas in the original safegcd algorithm, *f, g* can take negative
values. We resolve this by using the following modified steps:
```python
# Before
if delta > 0 and g & 1:
delta, f, g = 1 - delta, g, (g - f) // 2
# After
if delta > 0 and g & 1:
delta, f, g = 1 - delta, g, (g + f) // 2
```
The algorithm is still correct, since the changed divstep, called a "posdivstep" (see section 8.4
and E.5 in the paper) preserves *gcd(f, g)*. However, there's no proof that the modified algorithm
will converge. The justification for posdivsteps is completely empirical: in practice, it appears
that the vast majority of nonzero inputs converge to *f=g=gcd(f<sub>0</sub>, g<sub>0</sub>)* in a
number of steps proportional to their logarithm.
Note that:
- We require inputs to satisfy *gcd(x, M) = 1*, as otherwise *f=1* is not reached.
- We require inputs *x &neq; 0*, because applying posdivstep with *g=0* has no effect.
- We need to update the termination condition from *g=0* to *f=1*.
We account for the possibility of nonconvergence by only performing a bounded number of
posdivsteps, and then falling back to square-root based Jacobi calculation if a solution has not
yet been found.
The optimizations in sections 3-7 above are described in the context of the original divsteps, but
in the C implementation we also adapt most of them (not including "avoiding modulus operations",
since it's not necessary to track *d, e*, and "constant-time operation", since we never calculate
Jacobi symbols for secret data) to the posdivsteps version.

View File

@ -0,0 +1,27 @@
add_library(example INTERFACE)
target_include_directories(example INTERFACE
${PROJECT_SOURCE_DIR}/include
)
target_link_libraries(example INTERFACE
secp256k1
$<$<PLATFORM_ID:Windows>:bcrypt>
)
if(NOT BUILD_SHARED_LIBS AND MSVC)
target_link_options(example INTERFACE /IGNORE:4217)
endif()
add_executable(ecdsa_example ecdsa.c)
target_link_libraries(ecdsa_example example)
add_test(NAME ecdsa_example COMMAND ecdsa_example)
if(SECP256K1_ENABLE_MODULE_ECDH)
add_executable(ecdh_example ecdh.c)
target_link_libraries(ecdh_example example)
add_test(NAME ecdh_example COMMAND ecdh_example)
endif()
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
add_executable(schnorr_example schnorr.c)
target_link_libraries(schnorr_example example)
add_test(NAME schnorr_example COMMAND schnorr_example)
endif()

View File

@ -0,0 +1,121 @@
Creative Commons Legal Code
CC0 1.0 Universal
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
HEREUNDER.
Statement of Purpose
The laws of most jurisdictions throughout the world automatically confer
exclusive Copyright and Related Rights (defined below) upon the creator
and subsequent owner(s) (each and all, an "owner") of an original work of
authorship and/or a database (each, a "Work").
Certain owners wish to permanently relinquish those rights to a Work for
the purpose of contributing to a commons of creative, cultural and
scientific works ("Commons") that the public can reliably and without fear
of later claims of infringement build upon, modify, incorporate in other
works, reuse and redistribute as freely as possible in any form whatsoever
and for any purposes, including without limitation commercial purposes.
These owners may contribute to the Commons to promote the ideal of a free
culture and the further production of creative, cultural and scientific
works, or to gain reputation or greater distribution for their Work in
part through the use and efforts of others.
For these and/or other purposes and motivations, and without any
expectation of additional consideration or compensation, the person
associating CC0 with a Work (the "Affirmer"), to the extent that he or she
is an owner of Copyright and Related Rights in the Work, voluntarily
elects to apply CC0 to the Work and publicly distribute the Work under its
terms, with knowledge of his or her Copyright and Related Rights in the
Work and the meaning and intended legal effect of CC0 on those rights.
1. Copyright and Related Rights. A Work made available under CC0 may be
protected by copyright and related or neighboring rights ("Copyright and
Related Rights"). Copyright and Related Rights include, but are not
limited to, the following:
i. the right to reproduce, adapt, distribute, perform, display,
communicate, and translate a Work;
ii. moral rights retained by the original author(s) and/or performer(s);
iii. publicity and privacy rights pertaining to a person's image or
likeness depicted in a Work;
iv. rights protecting against unfair competition in regards to a Work,
subject to the limitations in paragraph 4(a), below;
v. rights protecting the extraction, dissemination, use and reuse of data
in a Work;
vi. database rights (such as those arising under Directive 96/9/EC of the
European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, and under any national implementation
thereof, including any amended or successor version of such
directive); and
vii. other similar, equivalent or corresponding rights throughout the
world based on applicable law or treaty, and any national
implementations thereof.
2. Waiver. To the greatest extent permitted by, but not in contravention
of, applicable law, Affirmer hereby overtly, fully, permanently,
irrevocably and unconditionally waives, abandons, and surrenders all of
Affirmer's Copyright and Related Rights and associated claims and causes
of action, whether now known or unknown (including existing as well as
future claims and causes of action), in the Work (i) in all territories
worldwide, (ii) for the maximum duration provided by applicable law or
treaty (including future time extensions), (iii) in any current or future
medium and for any number of copies, and (iv) for any purpose whatsoever,
including without limitation commercial, advertising or promotional
purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
member of the public at large and to the detriment of Affirmer's heirs and
successors, fully intending that such Waiver shall not be subject to
revocation, rescission, cancellation, termination, or any other legal or
equitable action to disrupt the quiet enjoyment of the Work by the public
as contemplated by Affirmer's express Statement of Purpose.
3. Public License Fallback. Should any part of the Waiver for any reason
be judged legally invalid or ineffective under applicable law, then the
Waiver shall be preserved to the maximum extent permitted taking into
account Affirmer's express Statement of Purpose. In addition, to the
extent the Waiver is so judged Affirmer hereby grants to each affected
person a royalty-free, non transferable, non sublicensable, non exclusive,
irrevocable and unconditional license to exercise Affirmer's Copyright and
Related Rights in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future
time extensions), (iii) in any current or future medium and for any number
of copies, and (iv) for any purpose whatsoever, including without
limitation commercial, advertising or promotional purposes (the
"License"). The License shall be deemed effective as of the date CC0 was
applied by Affirmer to the Work. Should any part of the License for any
reason be judged legally invalid or ineffective under applicable law, such
partial invalidity or ineffectiveness shall not invalidate the remainder
of the License, and in such case Affirmer hereby affirms that he or she
will not (i) exercise any of his or her remaining Copyright and Related
Rights in the Work or (ii) assert any associated claims and causes of
action with respect to the Work, in either case contrary to Affirmer's
express Statement of Purpose.
4. Limitations and Disclaimers.
a. No trademark or patent rights held by Affirmer are waived, abandoned,
surrendered, licensed or otherwise affected by this document.
b. Affirmer offers the Work as-is and makes no representations or
warranties of any kind concerning the Work, express, implied,
statutory or otherwise, including without limitation warranties of
title, merchantability, fitness for a particular purpose, non
infringement, or the absence of latent or other defects, accuracy, or
the present or absence of errors, whether or not discoverable, all to
the greatest extent permissible under applicable law.
c. Affirmer disclaims responsibility for clearing rights of other persons
that may apply to the Work or any use thereof, including without
limitation any person's Copyright and Related Rights in the Work.
Further, Affirmer disclaims responsibility for obtaining any necessary
consents, permissions or other rights required for any use of the
Work.
d. Affirmer understands and acknowledges that Creative Commons is not a
party to this document and has no duty or obligation with respect to
this CC0 or use of the Work.

View File

@ -0,0 +1,122 @@
/*************************************************************************
* Written in 2020-2022 by Elichai Turkel *
* To the extent possible under law, the author(s) have dedicated all *
* copyright and related and neighboring rights to the software in this *
* file to the public domain worldwide. This software is distributed *
* without any warranty. For the CC0 Public Domain Dedication, see *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <secp256k1.h>
#include <secp256k1_ecdh.h>
#include "examples_util.h"
int main(void) {
unsigned char seckey1[32];
unsigned char seckey2[32];
unsigned char compressed_pubkey1[33];
unsigned char compressed_pubkey2[33];
unsigned char shared_secret1[32];
unsigned char shared_secret2[32];
unsigned char randomize[32];
int return_val;
size_t len;
secp256k1_pubkey pubkey1;
secp256k1_pubkey pubkey2;
/* Before we can call actual API functions, we need to create a "context". */
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
if (!fill_random(randomize, sizeof(randomize))) {
printf("Failed to generate randomness\n");
return 1;
}
/* Randomizing the context is recommended to protect against side-channel
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
* information about it. This should never fail. */
return_val = secp256k1_context_randomize(ctx, randomize);
assert(return_val);
/*** Key Generation ***/
/* If the secret key is zero or out of range (bigger than secp256k1's
* order), we try to sample a new key. Note that the probability of this
* happening is negligible. */
while (1) {
if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) {
printf("Failed to generate randomness\n");
return 1;
}
if (secp256k1_ec_seckey_verify(ctx, seckey1) && secp256k1_ec_seckey_verify(ctx, seckey2)) {
break;
}
}
/* Public key creation using a valid context with a verified secret key should never fail */
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey1, seckey1);
assert(return_val);
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey2, seckey2);
assert(return_val);
/* Serialize pubkey1 in a compressed form (33 bytes), should always return 1 */
len = sizeof(compressed_pubkey1);
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey1, &len, &pubkey1, SECP256K1_EC_COMPRESSED);
assert(return_val);
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
assert(len == sizeof(compressed_pubkey1));
/* Serialize pubkey2 in a compressed form (33 bytes) */
len = sizeof(compressed_pubkey2);
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey2, &len, &pubkey2, SECP256K1_EC_COMPRESSED);
assert(return_val);
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
assert(len == sizeof(compressed_pubkey2));
/*** Creating the shared secret ***/
/* Perform ECDH with seckey1 and pubkey2. Should never fail with a verified
* seckey and valid pubkey */
return_val = secp256k1_ecdh(ctx, shared_secret1, &pubkey2, seckey1, NULL, NULL);
assert(return_val);
/* Perform ECDH with seckey2 and pubkey1. Should never fail with a verified
* seckey and valid pubkey */
return_val = secp256k1_ecdh(ctx, shared_secret2, &pubkey1, seckey2, NULL, NULL);
assert(return_val);
/* Both parties should end up with the same shared secret */
return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1));
assert(return_val == 0);
printf("Secret Key1: ");
print_hex(seckey1, sizeof(seckey1));
printf("Compressed Pubkey1: ");
print_hex(compressed_pubkey1, sizeof(compressed_pubkey1));
printf("\nSecret Key2: ");
print_hex(seckey2, sizeof(seckey2));
printf("Compressed Pubkey2: ");
print_hex(compressed_pubkey2, sizeof(compressed_pubkey2));
printf("\nShared Secret: ");
print_hex(shared_secret1, sizeof(shared_secret1));
/* This will clear everything from the context and free the memory */
secp256k1_context_destroy(ctx);
/* It's best practice to try to clear secrets from memory after using them.
* This is done because some bugs can allow an attacker to leak memory, for
* example through "out of bounds" array access (see Heartbleed), Or the OS
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
*
* Here we are preventing these writes from being optimized out, as any good compiler
* will remove any writes that aren't used. */
secure_erase(seckey1, sizeof(seckey1));
secure_erase(seckey2, sizeof(seckey2));
secure_erase(shared_secret1, sizeof(shared_secret1));
secure_erase(shared_secret2, sizeof(shared_secret2));
return 0;
}

View File

@ -0,0 +1,139 @@
/*************************************************************************
* Written in 2020-2022 by Elichai Turkel *
* To the extent possible under law, the author(s) have dedicated all *
* copyright and related and neighboring rights to the software in this *
* file to the public domain worldwide. This software is distributed *
* without any warranty. For the CC0 Public Domain Dedication, see *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <secp256k1.h>
#include "examples_util.h"
int main(void) {
/* Instead of signing the message directly, we must sign a 32-byte hash.
* Here the message is "Hello, world!" and the hash function was SHA-256.
* An actual implementation should just call SHA-256, but this example
* hardcodes the output to avoid depending on an additional library.
* See https://bitcoin.stackexchange.com/questions/81115/if-someone-wanted-to-pretend-to-be-satoshi-by-posting-a-fake-signature-to-defrau/81116#81116 */
unsigned char msg_hash[32] = {
0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4,
0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64,
0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34,
0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3,
};
unsigned char seckey[32];
unsigned char randomize[32];
unsigned char compressed_pubkey[33];
unsigned char serialized_signature[64];
size_t len;
int is_signature_valid, is_signature_valid2;
int return_val;
secp256k1_pubkey pubkey;
secp256k1_ecdsa_signature sig;
/* Before we can call actual API functions, we need to create a "context". */
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
if (!fill_random(randomize, sizeof(randomize))) {
printf("Failed to generate randomness\n");
return 1;
}
/* Randomizing the context is recommended to protect against side-channel
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
* information about it. This should never fail. */
return_val = secp256k1_context_randomize(ctx, randomize);
assert(return_val);
/*** Key Generation ***/
/* If the secret key is zero or out of range (bigger than secp256k1's
* order), we try to sample a new key. Note that the probability of this
* happening is negligible. */
while (1) {
if (!fill_random(seckey, sizeof(seckey))) {
printf("Failed to generate randomness\n");
return 1;
}
if (secp256k1_ec_seckey_verify(ctx, seckey)) {
break;
}
}
/* Public key creation using a valid context with a verified secret key should never fail */
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey, seckey);
assert(return_val);
/* Serialize the pubkey in a compressed form(33 bytes). Should always return 1. */
len = sizeof(compressed_pubkey);
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey, &len, &pubkey, SECP256K1_EC_COMPRESSED);
assert(return_val);
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
assert(len == sizeof(compressed_pubkey));
/*** Signing ***/
/* Generate an ECDSA signature `noncefp` and `ndata` allows you to pass a
* custom nonce function, passing `NULL` will use the RFC-6979 safe default.
* Signing with a valid context, verified secret key
* and the default nonce function should never fail. */
return_val = secp256k1_ecdsa_sign(ctx, &sig, msg_hash, seckey, NULL, NULL);
assert(return_val);
/* Serialize the signature in a compact form. Should always return 1
* according to the documentation in secp256k1.h. */
return_val = secp256k1_ecdsa_signature_serialize_compact(ctx, serialized_signature, &sig);
assert(return_val);
/*** Verification ***/
/* Deserialize the signature. This will return 0 if the signature can't be parsed correctly. */
if (!secp256k1_ecdsa_signature_parse_compact(ctx, &sig, serialized_signature)) {
printf("Failed parsing the signature\n");
return 1;
}
/* Deserialize the public key. This will return 0 if the public key can't be parsed correctly. */
if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, compressed_pubkey, sizeof(compressed_pubkey))) {
printf("Failed parsing the public key\n");
return 1;
}
/* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
is_signature_valid = secp256k1_ecdsa_verify(ctx, &sig, msg_hash, &pubkey);
printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
printf("Secret Key: ");
print_hex(seckey, sizeof(seckey));
printf("Public Key: ");
print_hex(compressed_pubkey, sizeof(compressed_pubkey));
printf("Signature: ");
print_hex(serialized_signature, sizeof(serialized_signature));
/* This will clear everything from the context and free the memory */
secp256k1_context_destroy(ctx);
/* Bonus example: if all we need is signature verification (and no key
generation or signing), we don't need to use a context created via
secp256k1_context_create(). We can simply use the static (i.e., global)
context secp256k1_context_static. See its description in
include/secp256k1.h for details. */
is_signature_valid2 = secp256k1_ecdsa_verify(secp256k1_context_static,
&sig, msg_hash, &pubkey);
assert(is_signature_valid2 == is_signature_valid);
/* It's best practice to try to clear secrets from memory after using them.
* This is done because some bugs can allow an attacker to leak memory, for
* example through "out of bounds" array access (see Heartbleed), Or the OS
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
*
* Here we are preventing these writes from being optimized out, as any good compiler
* will remove any writes that aren't used. */
secure_erase(seckey, sizeof(seckey));
return 0;
}

View File

@ -0,0 +1,108 @@
/*************************************************************************
* Copyright (c) 2020-2021 Elichai Turkel *
* Distributed under the CC0 software license, see the accompanying file *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
/*
* This file is an attempt at collecting best practice methods for obtaining randomness with different operating systems.
* It may be out-of-date. Consult the documentation of the operating system before considering to use the methods below.
*
* Platform randomness sources:
* Linux -> `getrandom(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. http://man7.org/linux/man-pages/man2/getrandom.2.html, https://linux.die.net/man/4/urandom
* macOS -> `getentropy(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. https://www.unix.com/man-page/mojave/2/getentropy, https://opensource.apple.com/source/xnu/xnu-517.12.7/bsd/man/man4/random.4.auto.html
* FreeBSD -> `getrandom(2)`(`sys/random.h`), if not available `kern.arandom` should be used. https://www.freebsd.org/cgi/man.cgi?query=getrandom, https://www.freebsd.org/cgi/man.cgi?query=random&sektion=4
* OpenBSD -> `getentropy(2)`(`unistd.h`), if not available `/dev/urandom` should be used. https://man.openbsd.org/getentropy, https://man.openbsd.org/urandom
* Windows -> `BCryptGenRandom`(`bcrypt.h`). https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
*/
#if defined(_WIN32)
/*
* The defined WIN32_NO_STATUS macro disables return code definitions in
* windows.h, which avoids "macro redefinition" MSVC warnings in ntstatus.h.
*/
#define WIN32_NO_STATUS
#include <windows.h>
#undef WIN32_NO_STATUS
#include <ntstatus.h>
#include <bcrypt.h>
#elif defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__)
#include <sys/random.h>
#elif defined(__OpenBSD__)
#include <unistd.h>
#else
#error "Couldn't identify the OS"
#endif
#include <stddef.h>
#include <limits.h>
#include <stdio.h>
/* Returns 1 on success, and 0 on failure. */
static int fill_random(unsigned char* data, size_t size) {
#if defined(_WIN32)
NTSTATUS res = BCryptGenRandom(NULL, data, size, BCRYPT_USE_SYSTEM_PREFERRED_RNG);
if (res != STATUS_SUCCESS || size > ULONG_MAX) {
return 0;
} else {
return 1;
}
#elif defined(__linux__) || defined(__FreeBSD__)
/* If `getrandom(2)` is not available you should fallback to /dev/urandom */
ssize_t res = getrandom(data, size, 0);
if (res < 0 || (size_t)res != size ) {
return 0;
} else {
return 1;
}
#elif defined(__APPLE__) || defined(__OpenBSD__)
/* If `getentropy(2)` is not available you should fallback to either
* `SecRandomCopyBytes` or /dev/urandom */
int res = getentropy(data, size);
if (res == 0) {
return 1;
} else {
return 0;
}
#endif
return 0;
}
static void print_hex(unsigned char* data, size_t size) {
size_t i;
printf("0x");
for (i = 0; i < size; i++) {
printf("%02x", data[i]);
}
printf("\n");
}
#if defined(_MSC_VER)
// For SecureZeroMemory
#include <Windows.h>
#endif
/* Cleanses memory to prevent leaking sensitive info. Won't be optimized out. */
static void secure_erase(void *ptr, size_t len) {
#if defined(_MSC_VER)
/* SecureZeroMemory is guaranteed not to be optimized out by MSVC. */
SecureZeroMemory(ptr, len);
#elif defined(__GNUC__)
/* We use a memory barrier that scares the compiler away from optimizing out the memset.
*
* Quoting Adam Langley <agl@google.com> in commit ad1907fe73334d6c696c8539646c21b11178f20f
* in BoringSSL (ISC License):
* As best as we can tell, this is sufficient to break any optimisations that
* might try to eliminate "superfluous" memsets.
* This method used in memzero_explicit() the Linux kernel, too. Its advantage is that it is
* pretty efficient, because the compiler can still implement the memset() efficently,
* just not remove it entirely. See "Dead Store Elimination (Still) Considered Harmful" by
* Yang et al. (USENIX Security 2017) for more background.
*/
memset(ptr, 0, len);
__asm__ __volatile__("" : : "r"(ptr) : "memory");
#else
void *(*volatile const volatile_memset)(void *, int, size_t) = memset;
volatile_memset(ptr, 0, len);
#endif
}

View File

@ -0,0 +1,156 @@
/*************************************************************************
* Written in 2020-2022 by Elichai Turkel *
* To the extent possible under law, the author(s) have dedicated all *
* copyright and related and neighboring rights to the software in this *
* file to the public domain worldwide. This software is distributed *
* without any warranty. For the CC0 Public Domain Dedication, see *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <secp256k1.h>
#include <secp256k1_extrakeys.h>
#include <secp256k1_schnorrsig.h>
#include "examples_util.h"
int main(void) {
unsigned char msg[12] = "Hello World!";
unsigned char msg_hash[32];
unsigned char tag[17] = "my_fancy_protocol";
unsigned char seckey[32];
unsigned char randomize[32];
unsigned char auxiliary_rand[32];
unsigned char serialized_pubkey[32];
unsigned char signature[64];
int is_signature_valid, is_signature_valid2;
int return_val;
secp256k1_xonly_pubkey pubkey;
secp256k1_keypair keypair;
/* Before we can call actual API functions, we need to create a "context". */
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
if (!fill_random(randomize, sizeof(randomize))) {
printf("Failed to generate randomness\n");
return 1;
}
/* Randomizing the context is recommended to protect against side-channel
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
* information about it. This should never fail. */
return_val = secp256k1_context_randomize(ctx, randomize);
assert(return_val);
/*** Key Generation ***/
/* If the secret key is zero or out of range (bigger than secp256k1's
* order), we try to sample a new key. Note that the probability of this
* happening is negligible. */
while (1) {
if (!fill_random(seckey, sizeof(seckey))) {
printf("Failed to generate randomness\n");
return 1;
}
/* Try to create a keypair with a valid context, it should only fail if
* the secret key is zero or out of range. */
if (secp256k1_keypair_create(ctx, &keypair, seckey)) {
break;
}
}
/* Extract the X-only public key from the keypair. We pass NULL for
* `pk_parity` as the parity isn't needed for signing or verification.
* `secp256k1_keypair_xonly_pub` supports returning the parity for
* other use cases such as tests or verifying Taproot tweaks.
* This should never fail with a valid context and public key. */
return_val = secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &keypair);
assert(return_val);
/* Serialize the public key. Should always return 1 for a valid public key. */
return_val = secp256k1_xonly_pubkey_serialize(ctx, serialized_pubkey, &pubkey);
assert(return_val);
/*** Signing ***/
/* Instead of signing (possibly very long) messages directly, we sign a
* 32-byte hash of the message in this example.
*
* We use secp256k1_tagged_sha256 to create this hash. This function expects
* a context-specific "tag", which restricts the context in which the signed
* messages should be considered valid. For example, if protocol A mandates
* to use the tag "my_fancy_protocol" and protocol B mandates to use the tag
* "my_boring_protocol", then signed messages from protocol A will never be
* valid in protocol B (and vice versa), even if keys are reused across
* protocols. This implements "domain separation", which is considered good
* practice. It avoids attacks in which users are tricked into signing a
* message that has intended consequences in the intended context (e.g.,
* protocol A) but would have unintended consequences if it were valid in
* some other context (e.g., protocol B). */
return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg));
assert(return_val);
/* Generate 32 bytes of randomness to use with BIP-340 schnorr signing. */
if (!fill_random(auxiliary_rand, sizeof(auxiliary_rand))) {
printf("Failed to generate randomness\n");
return 1;
}
/* Generate a Schnorr signature.
*
* We use the secp256k1_schnorrsig_sign32 function that provides a simple
* interface for signing 32-byte messages (which in our case is a hash of
* the actual message). BIP-340 recommends passing 32 bytes of randomness
* to the signing function to improve security against side-channel attacks.
* Signing with a valid context, a 32-byte message, a verified keypair, and
* any 32 bytes of auxiliary random data should never fail. */
return_val = secp256k1_schnorrsig_sign32(ctx, signature, msg_hash, &keypair, auxiliary_rand);
assert(return_val);
/*** Verification ***/
/* Deserialize the public key. This will return 0 if the public key can't
* be parsed correctly */
if (!secp256k1_xonly_pubkey_parse(ctx, &pubkey, serialized_pubkey)) {
printf("Failed parsing the public key\n");
return 1;
}
/* Compute the tagged hash on the received messages using the same tag as the signer. */
return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg));
assert(return_val);
/* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
is_signature_valid = secp256k1_schnorrsig_verify(ctx, signature, msg_hash, 32, &pubkey);
printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
printf("Secret Key: ");
print_hex(seckey, sizeof(seckey));
printf("Public Key: ");
print_hex(serialized_pubkey, sizeof(serialized_pubkey));
printf("Signature: ");
print_hex(signature, sizeof(signature));
/* This will clear everything from the context and free the memory */
secp256k1_context_destroy(ctx);
/* Bonus example: if all we need is signature verification (and no key
generation or signing), we don't need to use a context created via
secp256k1_context_create(). We can simply use the static (i.e., global)
context secp256k1_context_static. See its description in
include/secp256k1.h for details. */
is_signature_valid2 = secp256k1_schnorrsig_verify(secp256k1_context_static,
signature, msg_hash, 32, &pubkey);
assert(is_signature_valid2 == is_signature_valid);
/* It's best practice to try to clear secrets from memory after using them.
* This is done because some bugs can allow an attacker to leak memory, for
* example through "out of bounds" array access (see Heartbleed), Or the OS
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
*
* Here we are preventing these writes from being optimized out, as any good compiler
* will remove any writes that aren't used. */
secure_erase(seckey, sizeof(seckey));
return 0;
}

View File

@ -0,0 +1,902 @@
#ifndef SECP256K1_H
#define SECP256K1_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stddef.h>
/** Unless explicitly stated all pointer arguments must not be NULL.
*
* The following rules specify the order of arguments in API calls:
*
* 1. Context pointers go first, followed by output arguments, combined
* output/input arguments, and finally input-only arguments.
* 2. Array lengths always immediately follow the argument whose length
* they describe, even if this violates rule 1.
* 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated
* later go first. This means: signatures, public nonces, secret nonces,
* messages, public keys, secret keys, tweaks.
* 4. Arguments that are not data pointers go last, from more complex to less
* complex: function pointers, algorithm names, messages, void pointers,
* counts, flags, booleans.
* 5. Opaque data pointers follow the function pointer they are to be passed to.
*/
/** Opaque data structure that holds context information
*
* The primary purpose of context objects is to store randomization data for
* enhanced protection against side-channel leakage. This protection is only
* effective if the context is randomized after its creation. See
* secp256k1_context_create for creation of contexts and
* secp256k1_context_randomize for randomization.
*
* A secondary purpose of context objects is to store pointers to callback
* functions that the library will call when certain error states arise. See
* secp256k1_context_set_error_callback as well as
* secp256k1_context_set_illegal_callback for details. Future library versions
* may use context objects for additional purposes.
*
* A constructed context can safely be used from multiple threads
* simultaneously, but API calls that take a non-const pointer to a context
* need exclusive access to it. In particular this is the case for
* secp256k1_context_destroy, secp256k1_context_preallocated_destroy,
* and secp256k1_context_randomize.
*
* Regarding randomization, either do it once at creation time (in which case
* you do not need any locking for the other calls), or use a read-write lock.
*/
typedef struct secp256k1_context_struct secp256k1_context;
/** Opaque data structure that holds rewritable "scratch space"
*
* The purpose of this structure is to replace dynamic memory allocations,
* because we target architectures where this may not be available. It is
* essentially a resizable (within specified parameters) block of bytes,
* which is initially created either by memory allocation or TODO as a pointer
* into some fixed rewritable space.
*
* Unlike the context object, this cannot safely be shared between threads
* without additional synchronization logic.
*/
typedef struct secp256k1_scratch_space_struct secp256k1_scratch_space;
/** Opaque data structure that holds a parsed and valid public key.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission,
* use secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse. To
* compare keys, use secp256k1_ec_pubkey_cmp.
*/
typedef struct {
unsigned char data[64];
} secp256k1_pubkey;
/** Opaque data structured that holds a parsed ECDSA signature.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use the secp256k1_ecdsa_signature_serialize_* and
* secp256k1_ecdsa_signature_parse_* functions.
*/
typedef struct {
unsigned char data[64];
} secp256k1_ecdsa_signature;
/** A pointer to a function to deterministically generate a nonce.
*
* Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail.
* Out: nonce32: pointer to a 32-byte array to be filled by the function.
* In: msg32: the 32-byte message hash being verified (will not be NULL)
* key32: pointer to a 32-byte secret key (will not be NULL)
* algo16: pointer to a 16-byte array describing the signature
* algorithm (will be NULL for ECDSA for compatibility).
* data: Arbitrary data pointer that is passed through.
* attempt: how many iterations we have tried to find a nonce.
* This will almost always be 0, but different attempt values
* are required to result in a different nonce.
*
* Except for test cases, this function should compute some cryptographic hash of
* the message, the algorithm, the key and the attempt.
*/
typedef int (*secp256k1_nonce_function)(
unsigned char *nonce32,
const unsigned char *msg32,
const unsigned char *key32,
const unsigned char *algo16,
void *data,
unsigned int attempt
);
# if !defined(SECP256K1_GNUC_PREREQ)
# if defined(__GNUC__)&&defined(__GNUC_MINOR__)
# define SECP256K1_GNUC_PREREQ(_maj,_min) \
((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min))
# else
# define SECP256K1_GNUC_PREREQ(_maj,_min) 0
# endif
# endif
/* When this header is used at build-time the SECP256K1_BUILD define needs to be set
* to correctly setup export attributes and nullness checks. This is normally done
* by secp256k1.c but to guard against this header being included before secp256k1.c
* has had a chance to set the define (e.g. via test harnesses that just includes
* secp256k1.c) we set SECP256K1_NO_BUILD when this header is processed without the
* BUILD define so this condition can be caught.
*/
#ifndef SECP256K1_BUILD
# define SECP256K1_NO_BUILD
#endif
/* Symbol visibility. See libtool manual, section "Windows DLLs". */
#if defined(_WIN32) && !defined(__GNUC__)
# ifdef SECP256K1_BUILD
# ifdef DLL_EXPORT
# define SECP256K1_API __declspec (dllexport)
# define SECP256K1_API_VAR extern __declspec (dllexport)
# endif
# elif defined _MSC_VER
# define SECP256K1_API
# define SECP256K1_API_VAR extern __declspec (dllimport)
# elif defined DLL_EXPORT
# define SECP256K1_API __declspec (dllimport)
# define SECP256K1_API_VAR extern __declspec (dllimport)
# endif
#endif
#ifndef SECP256K1_API
# if defined(__GNUC__) && (__GNUC__ >= 4) && defined(SECP256K1_BUILD)
# define SECP256K1_API __attribute__ ((visibility ("default")))
# define SECP256K1_API_VAR extern __attribute__ ((visibility ("default")))
# else
# define SECP256K1_API
# define SECP256K1_API_VAR extern
# endif
#endif
/* Warning attributes
* NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out
* some paranoid null checks. */
# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__))
# else
# define SECP256K1_WARN_UNUSED_RESULT
# endif
# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x)))
# else
# define SECP256K1_ARG_NONNULL(_x)
# endif
/* Attribute for marking functions, types, and variables as deprecated */
#if !defined(SECP256K1_BUILD) && defined(__has_attribute)
# if __has_attribute(__deprecated__)
# define SECP256K1_DEPRECATED(_msg) __attribute__ ((__deprecated__(_msg)))
# else
# define SECP256K1_DEPRECATED(_msg)
# endif
#else
# define SECP256K1_DEPRECATED(_msg)
#endif
/* All flags' lower 8 bits indicate what they're for. Do not use directly. */
#define SECP256K1_FLAGS_TYPE_MASK ((1 << 8) - 1)
#define SECP256K1_FLAGS_TYPE_CONTEXT (1 << 0)
#define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1)
/* The higher bits contain the actual data. Do not use directly. */
#define SECP256K1_FLAGS_BIT_CONTEXT_VERIFY (1 << 8)
#define SECP256K1_FLAGS_BIT_CONTEXT_SIGN (1 << 9)
#define SECP256K1_FLAGS_BIT_CONTEXT_DECLASSIFY (1 << 10)
#define SECP256K1_FLAGS_BIT_COMPRESSION (1 << 8)
/** Context flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size, and
* secp256k1_context_preallocated_create. */
#define SECP256K1_CONTEXT_NONE (SECP256K1_FLAGS_TYPE_CONTEXT)
/** Deprecated context flags. These flags are treated equivalent to SECP256K1_CONTEXT_NONE. */
#define SECP256K1_CONTEXT_VERIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_VERIFY)
#define SECP256K1_CONTEXT_SIGN (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_SIGN)
/* Testing flag. Do not use. */
#define SECP256K1_CONTEXT_DECLASSIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_DECLASSIFY)
/** Flag to pass to secp256k1_ec_pubkey_serialize. */
#define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION)
#define SECP256K1_EC_UNCOMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION)
/** Prefix byte used to tag various encoded curvepoints for specific purposes */
#define SECP256K1_TAG_PUBKEY_EVEN 0x02
#define SECP256K1_TAG_PUBKEY_ODD 0x03
#define SECP256K1_TAG_PUBKEY_UNCOMPRESSED 0x04
#define SECP256K1_TAG_PUBKEY_HYBRID_EVEN 0x06
#define SECP256K1_TAG_PUBKEY_HYBRID_ODD 0x07
/** A built-in constant secp256k1 context object with static storage duration, to be
* used in conjunction with secp256k1_selftest.
*
* This context object offers *only limited functionality* , i.e., it cannot be used
* for API functions that perform computations involving secret keys, e.g., signing
* and public key generation. If this restriction applies to a specific API function,
* it is mentioned in its documentation. See secp256k1_context_create if you need a
* full context object that supports all functionality offered by the library.
*
* It is highly recommended to call secp256k1_selftest before using this context.
*/
SECP256K1_API_VAR const secp256k1_context *secp256k1_context_static;
/** Deprecated alias for secp256k1_context_static. */
SECP256K1_API_VAR const secp256k1_context *secp256k1_context_no_precomp
SECP256K1_DEPRECATED("Use secp256k1_context_static instead");
/** Perform basic self tests (to be used in conjunction with secp256k1_context_static)
*
* This function performs self tests that detect some serious usage errors and
* similar conditions, e.g., when the library is compiled for the wrong endianness.
* This is a last resort measure to be used in production. The performed tests are
* very rudimentary and are not intended as a replacement for running the test
* binaries.
*
* It is highly recommended to call this before using secp256k1_context_static.
* It is not necessary to call this function before using a context created with
* secp256k1_context_create (or secp256k1_context_preallocated_create), which will
* take care of performing the self tests.
*
* If the tests fail, this function will call the default error handler to abort the
* program (see secp256k1_context_set_error_callback).
*/
SECP256K1_API void secp256k1_selftest(void);
/** Create a secp256k1 context object (in dynamically allocated memory).
*
* This function uses malloc to allocate memory. It is guaranteed that malloc is
* called at most once for every call of this function. If you need to avoid dynamic
* memory allocation entirely, see secp256k1_context_static and the functions in
* secp256k1_preallocated.h.
*
* Returns: a newly created context object.
* In: flags: Always set to SECP256K1_CONTEXT_NONE (see below).
*
* The only valid non-deprecated flag in recent library versions is
* SECP256K1_CONTEXT_NONE, which will create a context sufficient for all functionality
* offered by the library. All other (deprecated) flags will be treated as equivalent
* to the SECP256K1_CONTEXT_NONE flag. Though the flags parameter primarily exists for
* historical reasons, future versions of the library may introduce new flags.
*
* If the context is intended to be used for API functions that perform computations
* involving secret keys, e.g., signing and public key generation, then it is highly
* recommended to call secp256k1_context_randomize on the context before calling
* those API functions. This will provide enhanced protection against side-channel
* leakage, see secp256k1_context_randomize for details.
*
* Do not create a new context object for each operation, as construction and
* randomization can take non-negligible time.
*/
SECP256K1_API secp256k1_context *secp256k1_context_create(
unsigned int flags
) SECP256K1_WARN_UNUSED_RESULT;
/** Copy a secp256k1 context object (into dynamically allocated memory).
*
* This function uses malloc to allocate memory. It is guaranteed that malloc is
* called at most once for every call of this function. If you need to avoid dynamic
* memory allocation entirely, see the functions in secp256k1_preallocated.h.
*
* Cloning secp256k1_context_static is not possible, and should not be emulated by
* the caller (e.g., using memcpy). Create a new context instead.
*
* Returns: a newly created context object.
* Args: ctx: an existing context to copy (not secp256k1_context_static)
*/
SECP256K1_API secp256k1_context *secp256k1_context_clone(
const secp256k1_context *ctx
) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
/** Destroy a secp256k1 context object (created in dynamically allocated memory).
*
* The context pointer may not be used afterwards.
*
* The context to destroy must have been created using secp256k1_context_create
* or secp256k1_context_clone. If the context has instead been created using
* secp256k1_context_preallocated_create or secp256k1_context_preallocated_clone, the
* behaviour is undefined. In that case, secp256k1_context_preallocated_destroy must
* be used instead.
*
* Args: ctx: an existing context to destroy, constructed using
* secp256k1_context_create or secp256k1_context_clone
* (i.e., not secp256k1_context_static).
*/
SECP256K1_API void secp256k1_context_destroy(
secp256k1_context *ctx
) SECP256K1_ARG_NONNULL(1);
/** Set a callback function to be called when an illegal argument is passed to
* an API call. It will only trigger for violations that are mentioned
* explicitly in the header.
*
* The philosophy is that these shouldn't be dealt with through a
* specific return value, as calling code should not have branches to deal with
* the case that this code itself is broken.
*
* On the other hand, during debug stage, one would want to be informed about
* such mistakes, and the default (crashing) may be inadvisable.
* When this callback is triggered, the API function called is guaranteed not
* to cause a crash, though its return value and output arguments are
* undefined.
*
* When this function has not been called (or called with fn==NULL), then the
* default handler will be used. The library provides a default handler which
* writes the message to stderr and calls abort. This default handler can be
* replaced at link time if the preprocessor macro
* USE_EXTERNAL_DEFAULT_CALLBACKS is defined, which is the case if the build
* has been configured with --enable-external-default-callbacks. Then the
* following two symbols must be provided to link against:
* - void secp256k1_default_illegal_callback_fn(const char *message, void *data);
* - void secp256k1_default_error_callback_fn(const char *message, void *data);
* The library can call these default handlers even before a proper callback data
* pointer could have been set using secp256k1_context_set_illegal_callback or
* secp256k1_context_set_error_callback, e.g., when the creation of a context
* fails. In this case, the corresponding default handler will be called with
* the data pointer argument set to NULL.
*
* Args: ctx: an existing context object.
* In: fun: a pointer to a function to call when an illegal argument is
* passed to the API, taking a message and an opaque pointer.
* (NULL restores the default handler.)
* data: the opaque pointer to pass to fun above, must be NULL for the default handler.
*
* See also secp256k1_context_set_error_callback.
*/
SECP256K1_API void secp256k1_context_set_illegal_callback(
secp256k1_context *ctx,
void (*fun)(const char *message, void *data),
const void *data
) SECP256K1_ARG_NONNULL(1);
/** Set a callback function to be called when an internal consistency check
* fails.
*
* The default callback writes an error message to stderr and calls abort
* to abort the program.
*
* This can only trigger in case of a hardware failure, miscompilation,
* memory corruption, serious bug in the library, or other error would can
* otherwise result in undefined behaviour. It will not trigger due to mere
* incorrect usage of the API (see secp256k1_context_set_illegal_callback
* for that). After this callback returns, anything may happen, including
* crashing.
*
* Args: ctx: an existing context object.
* In: fun: a pointer to a function to call when an internal error occurs,
* taking a message and an opaque pointer (NULL restores the
* default handler, see secp256k1_context_set_illegal_callback
* for details).
* data: the opaque pointer to pass to fun above, must be NULL for the default handler.
*
* See also secp256k1_context_set_illegal_callback.
*/
SECP256K1_API void secp256k1_context_set_error_callback(
secp256k1_context *ctx,
void (*fun)(const char *message, void *data),
const void *data
) SECP256K1_ARG_NONNULL(1);
/** Create a secp256k1 scratch space object.
*
* Returns: a newly created scratch space.
* Args: ctx: an existing context object.
* In: size: amount of memory to be available as scratch space. Some extra
* (<100 bytes) will be allocated for extra accounting.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT secp256k1_scratch_space *secp256k1_scratch_space_create(
const secp256k1_context *ctx,
size_t size
) SECP256K1_ARG_NONNULL(1);
/** Destroy a secp256k1 scratch space.
*
* The pointer may not be used afterwards.
* Args: ctx: a secp256k1 context object.
* scratch: space to destroy
*/
SECP256K1_API void secp256k1_scratch_space_destroy(
const secp256k1_context *ctx,
secp256k1_scratch_space *scratch
) SECP256K1_ARG_NONNULL(1);
/** Parse a variable-length public key into the pubkey object.
*
* Returns: 1 if the public key was fully valid.
* 0 if the public key could not be parsed or is invalid.
* Args: ctx: a secp256k1 context object.
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
* parsed version of input. If not, its value is undefined.
* In: input: pointer to a serialized public key
* inputlen: length of the array pointed to by input
*
* This function supports parsing compressed (33 bytes, header byte 0x02 or
* 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header
* byte 0x06 or 0x07) format public keys.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize a pubkey object into a serialized byte sequence.
*
* Returns: 1 always.
* Args: ctx: a secp256k1 context object.
* Out: output: a pointer to a 65-byte (if compressed==0) or 33-byte (if
* compressed==1) byte array to place the serialized key
* in.
* In/Out: outputlen: a pointer to an integer which is initially set to the
* size of output, and is overwritten with the written
* size.
* In: pubkey: a pointer to a secp256k1_pubkey containing an
* initialized public key.
* flags: SECP256K1_EC_COMPRESSED if serialization should be in
* compressed format, otherwise SECP256K1_EC_UNCOMPRESSED.
*/
SECP256K1_API int secp256k1_ec_pubkey_serialize(
const secp256k1_context *ctx,
unsigned char *output,
size_t *outputlen,
const secp256k1_pubkey *pubkey,
unsigned int flags
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Compare two public keys using lexicographic (of compressed serialization) order
*
* Returns: <0 if the first public key is less than the second
* >0 if the first public key is greater than the second
* 0 if the two public keys are equal
* Args: ctx: a secp256k1 context object.
* In: pubkey1: first public key to compare
* pubkey2: second public key to compare
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_cmp(
const secp256k1_context *ctx,
const secp256k1_pubkey *pubkey1,
const secp256k1_pubkey *pubkey2
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Parse an ECDSA signature in compact (64 bytes) format.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input64: a pointer to the 64-byte array to parse
*
* The signature must consist of a 32-byte big endian R value, followed by a
* 32-byte big endian S value. If R or S fall outside of [0..order-1], the
* encoding is invalid. R and S with value 0 are allowed in the encoding.
*
* After the call, sig will always be initialized. If parsing failed or R or
* S are zero, the resulting sig value is guaranteed to fail verification for
* any message and public key.
*/
SECP256K1_API int secp256k1_ecdsa_signature_parse_compact(
const secp256k1_context *ctx,
secp256k1_ecdsa_signature *sig,
const unsigned char *input64
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Parse a DER ECDSA signature.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input: a pointer to the signature to be parsed
* inputlen: the length of the array pointed to be input
*
* This function will accept any valid DER encoded signature, even if the
* encoded numbers are out of range.
*
* After the call, sig will always be initialized. If parsing failed or the
* encoded numbers are out of range, signature verification with it is
* guaranteed to fail for every message and public key.
*/
SECP256K1_API int secp256k1_ecdsa_signature_parse_der(
const secp256k1_context *ctx,
secp256k1_ecdsa_signature *sig,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an ECDSA signature in DER format.
*
* Returns: 1 if enough space was available to serialize, 0 otherwise
* Args: ctx: a secp256k1 context object
* Out: output: a pointer to an array to store the DER serialization
* In/Out: outputlen: a pointer to a length integer. Initially, this integer
* should be set to the length of output. After the call
* it will be set to the length of the serialization (even
* if 0 was returned).
* In: sig: a pointer to an initialized signature object
*/
SECP256K1_API int secp256k1_ecdsa_signature_serialize_der(
const secp256k1_context *ctx,
unsigned char *output,
size_t *outputlen,
const secp256k1_ecdsa_signature *sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Serialize an ECDSA signature in compact (64 byte) format.
*
* Returns: 1
* Args: ctx: a secp256k1 context object
* Out: output64: a pointer to a 64-byte array to store the compact serialization
* In: sig: a pointer to an initialized signature object
*
* See secp256k1_ecdsa_signature_parse_compact for details about the encoding.
*/
SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact(
const secp256k1_context *ctx,
unsigned char *output64,
const secp256k1_ecdsa_signature *sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Verify an ECDSA signature.
*
* Returns: 1: correct signature
* 0: incorrect or unparseable signature
* Args: ctx: a secp256k1 context object.
* In: sig: the signature being verified.
* msghash32: the 32-byte message hash being verified.
* The verifier must make sure to apply a cryptographic
* hash function to the message by itself and not accept an
* msghash32 value directly. Otherwise, it would be easy to
* create a "valid" signature without knowledge of the
* secret key. See also
* https://bitcoin.stackexchange.com/a/81116/35586 for more
* background on this topic.
* pubkey: pointer to an initialized public key to verify with.
*
* To avoid accepting malleable signatures, only ECDSA signatures in lower-S
* form are accepted.
*
* If you need to accept ECDSA signatures from sources that do not obey this
* rule, apply secp256k1_ecdsa_signature_normalize to the signature prior to
* verification, but be aware that doing so results in malleable signatures.
*
* For details, see the comments for that function.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
const secp256k1_context *ctx,
const secp256k1_ecdsa_signature *sig,
const unsigned char *msghash32,
const secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Convert a signature to a normalized lower-S form.
*
* Returns: 1 if sigin was not normalized, 0 if it already was.
* Args: ctx: a secp256k1 context object
* Out: sigout: a pointer to a signature to fill with the normalized form,
* or copy if the input was already normalized. (can be NULL if
* you're only interested in whether the input was already
* normalized).
* In: sigin: a pointer to a signature to check/normalize (can be identical to sigout)
*
* With ECDSA a third-party can forge a second distinct signature of the same
* message, given a single initial signature, but without knowing the key. This
* is done by negating the S value modulo the order of the curve, 'flipping'
* the sign of the random point R which is not included in the signature.
*
* Forgery of the same message isn't universally problematic, but in systems
* where message malleability or uniqueness of signatures is important this can
* cause issues. This forgery can be blocked by all verifiers forcing signers
* to use a normalized form.
*
* The lower-S form reduces the size of signatures slightly on average when
* variable length encodings (such as DER) are used and is cheap to verify,
* making it a good choice. Security of always using lower-S is assured because
* anyone can trivially modify a signature after the fact to enforce this
* property anyway.
*
* The lower S value is always between 0x1 and
* 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
* inclusive.
*
* No other forms of ECDSA malleability are known and none seem likely, but
* there is no formal proof that ECDSA, even with this additional restriction,
* is free of other malleability. Commonly used serialization schemes will also
* accept various non-unique encodings, so care should be taken when this
* property is required for an application.
*
* The secp256k1_ecdsa_sign function will by default create signatures in the
* lower-S form, and secp256k1_ecdsa_verify will not accept others. In case
* signatures come from a system that cannot enforce this property,
* secp256k1_ecdsa_signature_normalize must be called before verification.
*/
SECP256K1_API int secp256k1_ecdsa_signature_normalize(
const secp256k1_context *ctx,
secp256k1_ecdsa_signature *sigout,
const secp256k1_ecdsa_signature *sigin
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3);
/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
* If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
* extra entropy.
*/
SECP256K1_API_VAR const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
SECP256K1_API_VAR const secp256k1_nonce_function secp256k1_nonce_function_default;
/** Create an ECDSA signature.
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the secret key was invalid.
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: sig: pointer to an array where the signature will be placed.
* In: msghash32: the 32-byte message hash being signed.
* seckey: pointer to a 32-byte secret key.
* noncefp: pointer to a nonce generation function. If NULL,
* secp256k1_nonce_function_default is used.
* ndata: pointer to arbitrary data used by the nonce generation function
* (can be NULL). If it is non-NULL and
* secp256k1_nonce_function_default is used, then ndata must be a
* pointer to 32-bytes of additional data.
*
* The created signature is always in lower-S form. See
* secp256k1_ecdsa_signature_normalize for more details.
*/
SECP256K1_API int secp256k1_ecdsa_sign(
const secp256k1_context *ctx,
secp256k1_ecdsa_signature *sig,
const unsigned char *msghash32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Verify an ECDSA secret key.
*
* A secret key is valid if it is not 0 and less than the secp256k1 curve order
* when interpreted as an integer (most significant byte first). The
* probability of choosing a 32-byte string uniformly at random which is an
* invalid secret key is negligible.
*
* Returns: 1: secret key is valid
* 0: secret key is invalid
* Args: ctx: pointer to a context object.
* In: seckey: pointer to a 32-byte secret key.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(
const secp256k1_context *ctx,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Compute the public key for a secret key.
*
* Returns: 1: secret was valid, public key stores.
* 0: secret was invalid, try again.
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: pubkey: pointer to the created public key.
* In: seckey: pointer to a 32-byte secret key.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Negates a secret key in place.
*
* Returns: 0 if the given secret key is invalid according to
* secp256k1_ec_seckey_verify. 1 otherwise
* Args: ctx: pointer to a context object
* In/Out: seckey: pointer to the 32-byte secret key to be negated. If the
* secret key is invalid according to
* secp256k1_ec_seckey_verify, this function returns 0 and
* seckey will be set to some unspecified value.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_negate(
const secp256k1_context *ctx,
unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Same as secp256k1_ec_seckey_negate, but DEPRECATED. Will be removed in
* future versions. */
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_negate(
const secp256k1_context *ctx,
unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2)
SECP256K1_DEPRECATED("Use secp256k1_ec_seckey_negate instead");
/** Negates a public key in place.
*
* Returns: 1 always
* Args: ctx: pointer to a context object
* In/Out: pubkey: pointer to the public key to be negated.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_negate(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Tweak a secret key by adding tweak to it.
*
* Returns: 0 if the arguments are invalid or the resulting secret key would be
* invalid (only when the tweak is the negation of the secret key). 1
* otherwise.
* Args: ctx: pointer to a context object.
* In/Out: seckey: pointer to a 32-byte secret key. If the secret key is
* invalid according to secp256k1_ec_seckey_verify, this
* function returns 0. seckey will be set to some unspecified
* value if this function returns 0.
* In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to
* secp256k1_ec_seckey_verify, this function returns 0. For
* uniformly random 32-byte arrays the chance of being invalid
* is negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_tweak_add(
const secp256k1_context *ctx,
unsigned char *seckey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Same as secp256k1_ec_seckey_tweak_add, but DEPRECATED. Will be removed in
* future versions. */
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add(
const secp256k1_context *ctx,
unsigned char *seckey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
SECP256K1_DEPRECATED("Use secp256k1_ec_seckey_tweak_add instead");
/** Tweak a public key by adding tweak times the generator to it.
*
* Returns: 0 if the arguments are invalid or the resulting public key would be
* invalid (only when the tweak is the negation of the corresponding
* secret key). 1 otherwise.
* Args: ctx: pointer to a context object.
* In/Out: pubkey: pointer to a public key object. pubkey will be set to an
* invalid value if this function returns 0.
* In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to
* secp256k1_ec_seckey_verify, this function returns 0. For
* uniformly random 32-byte arrays the chance of being invalid
* is negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a secret key by multiplying it by a tweak.
*
* Returns: 0 if the arguments are invalid. 1 otherwise.
* Args: ctx: pointer to a context object.
* In/Out: seckey: pointer to a 32-byte secret key. If the secret key is
* invalid according to secp256k1_ec_seckey_verify, this
* function returns 0. seckey will be set to some unspecified
* value if this function returns 0.
* In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to
* secp256k1_ec_seckey_verify, this function returns 0. For
* uniformly random 32-byte arrays the chance of being invalid
* is negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_tweak_mul(
const secp256k1_context *ctx,
unsigned char *seckey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Same as secp256k1_ec_seckey_tweak_mul, but DEPRECATED. Will be removed in
* future versions. */
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul(
const secp256k1_context *ctx,
unsigned char *seckey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
SECP256K1_DEPRECATED("Use secp256k1_ec_seckey_tweak_mul instead");
/** Tweak a public key by multiplying it by a tweak value.
*
* Returns: 0 if the arguments are invalid. 1 otherwise.
* Args: ctx: pointer to a context object.
* In/Out: pubkey: pointer to a public key object. pubkey will be set to an
* invalid value if this function returns 0.
* In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to
* secp256k1_ec_seckey_verify, this function returns 0. For
* uniformly random 32-byte arrays the chance of being invalid
* is negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Randomizes the context to provide enhanced protection against side-channel leakage.
*
* Returns: 1: randomization successful
* 0: error
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* In: seed32: pointer to a 32-byte random seed (NULL resets to initial state).
*
* While secp256k1 code is written and tested to be constant-time no matter what
* secret values are, it is possible that a compiler may output code which is not,
* and also that the CPU may not emit the same radio frequencies or draw the same
* amount of power for all values. Randomization of the context shields against
* side-channel observations which aim to exploit secret-dependent behaviour in
* certain computations which involve secret keys.
*
* It is highly recommended to call this function on contexts returned from
* secp256k1_context_create or secp256k1_context_clone (or from the corresponding
* functions in secp256k1_preallocated.h) before using these contexts to call API
* functions that perform computations involving secret keys, e.g., signing and
* public key generation. It is possible to call this function more than once on
* the same context, and doing so before every few computations involving secret
* keys is recommended as a defense-in-depth measure. Randomization of the static
* context secp256k1_context_static is not supported.
*
* Currently, the random seed is mainly used for blinding multiplications of a
* secret scalar with the elliptic curve base point. Multiplications of this
* kind are performed by exactly those API functions which are documented to
* require a context that is not secp256k1_context_static. As a rule of thumb,
* these are all functions which take a secret key (or a keypair) as an input.
* A notable exception to that rule is the ECDH module, which relies on a different
* kind of elliptic curve point multiplication and thus does not benefit from
* enhanced protection against side-channel leakage currently.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
secp256k1_context *ctx,
const unsigned char *seed32
) SECP256K1_ARG_NONNULL(1);
/** Add a number of public keys together.
*
* Returns: 1: the sum of the public keys is valid.
* 0: the sum of the public keys is not valid.
* Args: ctx: pointer to a context object.
* Out: out: pointer to a public key object for placing the resulting public key.
* In: ins: pointer to array of pointers to public keys.
* n: the number of public keys to add together (must be at least 1).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine(
const secp256k1_context *ctx,
secp256k1_pubkey *out,
const secp256k1_pubkey * const *ins,
size_t n
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Compute a tagged hash as defined in BIP-340.
*
* This is useful for creating a message hash and achieving domain separation
* through an application-specific tag. This function returns
* SHA256(SHA256(tag)||SHA256(tag)||msg). Therefore, tagged hash
* implementations optimized for a specific tag can precompute the SHA256 state
* after hashing the tag hashes.
*
* Returns: 1 always.
* Args: ctx: pointer to a context object
* Out: hash32: pointer to a 32-byte array to store the resulting hash
* In: tag: pointer to an array containing the tag
* taglen: length of the tag array
* msg: pointer to an array containing the message
* msglen: length of the message array
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_tagged_sha256(
const secp256k1_context *ctx,
unsigned char *hash32,
const unsigned char *tag,
size_t taglen,
const unsigned char *msg,
size_t msglen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_H */

View File

@ -0,0 +1,63 @@
#ifndef SECP256K1_ECDH_H
#define SECP256K1_ECDH_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/** A pointer to a function that hashes an EC point to obtain an ECDH secret
*
* Returns: 1 if the point was successfully hashed.
* 0 will cause secp256k1_ecdh to fail and return 0.
* Other return values are not allowed, and the behaviour of
* secp256k1_ecdh is undefined for other return values.
* Out: output: pointer to an array to be filled by the function
* In: x32: pointer to a 32-byte x coordinate
* y32: pointer to a 32-byte y coordinate
* data: arbitrary data pointer that is passed through
*/
typedef int (*secp256k1_ecdh_hash_function)(
unsigned char *output,
const unsigned char *x32,
const unsigned char *y32,
void *data
);
/** An implementation of SHA256 hash function that applies to compressed public key.
* Populates the output parameter with 32 bytes. */
SECP256K1_API_VAR const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_sha256;
/** A default ECDH hash function (currently equal to secp256k1_ecdh_hash_function_sha256).
* Populates the output parameter with 32 bytes. */
SECP256K1_API_VAR const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_default;
/** Compute an EC Diffie-Hellman secret in constant time
*
* Returns: 1: exponentiation was successful
* 0: scalar was invalid (zero or overflow) or hashfp returned 0
* Args: ctx: pointer to a context object.
* Out: output: pointer to an array to be filled by hashfp.
* In: pubkey: a pointer to a secp256k1_pubkey containing an initialized public key.
* seckey: a 32-byte scalar with which to multiply the point.
* hashfp: pointer to a hash function. If NULL,
* secp256k1_ecdh_hash_function_sha256 is used
* (in which case, 32 bytes will be written to output).
* data: arbitrary data pointer that is passed through to hashfp
* (can be NULL for secp256k1_ecdh_hash_function_sha256).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh(
const secp256k1_context *ctx,
unsigned char *output,
const secp256k1_pubkey *pubkey,
const unsigned char *seckey,
secp256k1_ecdh_hash_function hashfp,
void *data
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_ECDH_H */

View File

@ -0,0 +1,249 @@
#ifndef SECP256K1_EXTRAKEYS_H
#define SECP256K1_EXTRAKEYS_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/** Opaque data structure that holds a parsed and valid "x-only" public key.
* An x-only pubkey encodes a point whose Y coordinate is even. It is
* serialized using only its X coordinate (32 bytes). See BIP-340 for more
* information about x-only pubkeys.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, use
* use secp256k1_xonly_pubkey_serialize and secp256k1_xonly_pubkey_parse. To
* compare keys, use secp256k1_xonly_pubkey_cmp.
*/
typedef struct {
unsigned char data[64];
} secp256k1_xonly_pubkey;
/** Opaque data structure that holds a keypair consisting of a secret and a
* public key.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 96 bytes in size, and can be safely copied/moved.
*/
typedef struct {
unsigned char data[96];
} secp256k1_keypair;
/** Parse a 32-byte sequence into a xonly_pubkey object.
*
* Returns: 1 if the public key was fully valid.
* 0 if the public key could not be parsed or is invalid.
*
* Args: ctx: a secp256k1 context object.
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
* parsed version of input. If not, it's set to an invalid value.
* In: input32: pointer to a serialized xonly_pubkey.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_parse(
const secp256k1_context *ctx,
secp256k1_xonly_pubkey *pubkey,
const unsigned char *input32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an xonly_pubkey object into a 32-byte sequence.
*
* Returns: 1 always.
*
* Args: ctx: a secp256k1 context object.
* Out: output32: a pointer to a 32-byte array to place the serialized key in.
* In: pubkey: a pointer to a secp256k1_xonly_pubkey containing an initialized public key.
*/
SECP256K1_API int secp256k1_xonly_pubkey_serialize(
const secp256k1_context *ctx,
unsigned char *output32,
const secp256k1_xonly_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Compare two x-only public keys using lexicographic order
*
* Returns: <0 if the first public key is less than the second
* >0 if the first public key is greater than the second
* 0 if the two public keys are equal
* Args: ctx: a secp256k1 context object.
* In: pubkey1: first public key to compare
* pubkey2: second public key to compare
*/
SECP256K1_API int secp256k1_xonly_pubkey_cmp(
const secp256k1_context *ctx,
const secp256k1_xonly_pubkey *pk1,
const secp256k1_xonly_pubkey *pk2
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Converts a secp256k1_pubkey into a secp256k1_xonly_pubkey.
*
* Returns: 1 always.
*
* Args: ctx: pointer to a context object.
* Out: xonly_pubkey: pointer to an x-only public key object for placing the converted public key.
* pk_parity: Ignored if NULL. Otherwise, pointer to an integer that
* will be set to 1 if the point encoded by xonly_pubkey is
* the negation of the pubkey and set to 0 otherwise.
* In: pubkey: pointer to a public key that is converted.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_from_pubkey(
const secp256k1_context *ctx,
secp256k1_xonly_pubkey *xonly_pubkey,
int *pk_parity,
const secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
/** Tweak an x-only public key by adding the generator multiplied with tweak32
* to it.
*
* Note that the resulting point can not in general be represented by an x-only
* pubkey because it may have an odd Y coordinate. Instead, the output_pubkey
* is a normal secp256k1_pubkey.
*
* Returns: 0 if the arguments are invalid or the resulting public key would be
* invalid (only when the tweak is the negation of the corresponding
* secret key). 1 otherwise.
*
* Args: ctx: pointer to a context object.
* Out: output_pubkey: pointer to a public key to store the result. Will be set
* to an invalid value if this function returns 0.
* In: internal_pubkey: pointer to an x-only pubkey to apply the tweak to.
* tweak32: pointer to a 32-byte tweak. If the tweak is invalid
* according to secp256k1_ec_seckey_verify, this function
* returns 0. For uniformly random 32-byte arrays the
* chance of being invalid is negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_tweak_add(
const secp256k1_context *ctx,
secp256k1_pubkey *output_pubkey,
const secp256k1_xonly_pubkey *internal_pubkey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Checks that a tweaked pubkey is the result of calling
* secp256k1_xonly_pubkey_tweak_add with internal_pubkey and tweak32.
*
* The tweaked pubkey is represented by its 32-byte x-only serialization and
* its pk_parity, which can both be obtained by converting the result of
* tweak_add to a secp256k1_xonly_pubkey.
*
* Note that this alone does _not_ verify that the tweaked pubkey is a
* commitment. If the tweak is not chosen in a specific way, the tweaked pubkey
* can easily be the result of a different internal_pubkey and tweak.
*
* Returns: 0 if the arguments are invalid or the tweaked pubkey is not the
* result of tweaking the internal_pubkey with tweak32. 1 otherwise.
* Args: ctx: pointer to a context object.
* In: tweaked_pubkey32: pointer to a serialized xonly_pubkey.
* tweaked_pk_parity: the parity of the tweaked pubkey (whose serialization
* is passed in as tweaked_pubkey32). This must match the
* pk_parity value that is returned when calling
* secp256k1_xonly_pubkey with the tweaked pubkey, or
* this function will fail.
* internal_pubkey: pointer to an x-only public key object to apply the tweak to.
* tweak32: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_tweak_add_check(
const secp256k1_context *ctx,
const unsigned char *tweaked_pubkey32,
int tweaked_pk_parity,
const secp256k1_xonly_pubkey *internal_pubkey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
/** Compute the keypair for a secret key.
*
* Returns: 1: secret was valid, keypair is ready to use
* 0: secret was invalid, try again with a different secret
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: keypair: pointer to the created keypair.
* In: seckey: pointer to a 32-byte secret key.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_create(
const secp256k1_context *ctx,
secp256k1_keypair *keypair,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Get the secret key from a keypair.
*
* Returns: 1 always.
* Args: ctx: pointer to a context object.
* Out: seckey: pointer to a 32-byte buffer for the secret key.
* In: keypair: pointer to a keypair.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_sec(
const secp256k1_context *ctx,
unsigned char *seckey,
const secp256k1_keypair *keypair
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Get the public key from a keypair.
*
* Returns: 1 always.
* Args: ctx: pointer to a context object.
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to
* the keypair public key. If not, it's set to an invalid value.
* In: keypair: pointer to a keypair.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_pub(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const secp256k1_keypair *keypair
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Get the x-only public key from a keypair.
*
* This is the same as calling secp256k1_keypair_pub and then
* secp256k1_xonly_pubkey_from_pubkey.
*
* Returns: 1 always.
* Args: ctx: pointer to a context object.
* Out: pubkey: pointer to an xonly_pubkey object. If 1 is returned, it is set
* to the keypair public key after converting it to an
* xonly_pubkey. If not, it's set to an invalid value.
* pk_parity: Ignored if NULL. Otherwise, pointer to an integer that will be set to the
* pk_parity argument of secp256k1_xonly_pubkey_from_pubkey.
* In: keypair: pointer to a keypair.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_pub(
const secp256k1_context *ctx,
secp256k1_xonly_pubkey *pubkey,
int *pk_parity,
const secp256k1_keypair *keypair
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
/** Tweak a keypair by adding tweak32 to the secret key and updating the public
* key accordingly.
*
* Calling this function and then secp256k1_keypair_pub results in the same
* public key as calling secp256k1_keypair_xonly_pub and then
* secp256k1_xonly_pubkey_tweak_add.
*
* Returns: 0 if the arguments are invalid or the resulting keypair would be
* invalid (only when the tweak is the negation of the keypair's
* secret key). 1 otherwise.
*
* Args: ctx: pointer to a context object.
* In/Out: keypair: pointer to a keypair to apply the tweak to. Will be set to
* an invalid value if this function returns 0.
* In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according
* to secp256k1_ec_seckey_verify, this function returns 0. For
* uniformly random 32-byte arrays the chance of being invalid
* is negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_tweak_add(
const secp256k1_context *ctx,
secp256k1_keypair *keypair,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_EXTRAKEYS_H */

View File

@ -0,0 +1,134 @@
#ifndef SECP256K1_PREALLOCATED_H
#define SECP256K1_PREALLOCATED_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/* The module provided by this header file is intended for settings in which it
* is not possible or desirable to rely on dynamic memory allocation. It provides
* functions for creating, cloning, and destroying secp256k1 context objects in a
* contiguous fixed-size block of memory provided by the caller.
*
* Context objects created by functions in this module can be used like contexts
* objects created by functions in secp256k1.h, i.e., they can be passed to any
* API function that expects a context object (see secp256k1.h for details). The
* only exception is that context objects created by functions in this module
* must be destroyed using secp256k1_context_preallocated_destroy (in this
* module) instead of secp256k1_context_destroy (in secp256k1.h).
*
* It is guaranteed that functions in this module will not call malloc or its
* friends realloc, calloc, and free.
*/
/** Determine the memory size of a secp256k1 context object to be created in
* caller-provided memory.
*
* The purpose of this function is to determine how much memory must be provided
* to secp256k1_context_preallocated_create.
*
* Returns: the required size of the caller-provided memory block
* In: flags: which parts of the context to initialize.
*/
SECP256K1_API size_t secp256k1_context_preallocated_size(
unsigned int flags
) SECP256K1_WARN_UNUSED_RESULT;
/** Create a secp256k1 context object in caller-provided memory.
*
* The caller must provide a pointer to a rewritable contiguous block of memory
* of size at least secp256k1_context_preallocated_size(flags) bytes, suitably
* aligned to hold an object of any type.
*
* The block of memory is exclusively owned by the created context object during
* the lifetime of this context object, which begins with the call to this
* function and ends when a call to secp256k1_context_preallocated_destroy
* (which destroys the context object again) returns. During the lifetime of the
* context object, the caller is obligated not to access this block of memory,
* i.e., the caller may not read or write the memory, e.g., by copying the memory
* contents to a different location or trying to create a second context object
* in the memory. In simpler words, the prealloc pointer (or any pointer derived
* from it) should not be used during the lifetime of the context object.
*
* Returns: a newly created context object.
* In: prealloc: a pointer to a rewritable contiguous block of memory of
* size at least secp256k1_context_preallocated_size(flags)
* bytes, as detailed above.
* flags: which parts of the context to initialize.
*
* See secp256k1_context_create (in secp256k1.h) for further details.
*
* See also secp256k1_context_randomize (in secp256k1.h)
* and secp256k1_context_preallocated_destroy.
*/
SECP256K1_API secp256k1_context *secp256k1_context_preallocated_create(
void *prealloc,
unsigned int flags
) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
/** Determine the memory size of a secp256k1 context object to be copied into
* caller-provided memory.
*
* Returns: the required size of the caller-provided memory block.
* In: ctx: an existing context to copy.
*/
SECP256K1_API size_t secp256k1_context_preallocated_clone_size(
const secp256k1_context *ctx
) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
/** Copy a secp256k1 context object into caller-provided memory.
*
* The caller must provide a pointer to a rewritable contiguous block of memory
* of size at least secp256k1_context_preallocated_size(flags) bytes, suitably
* aligned to hold an object of any type.
*
* The block of memory is exclusively owned by the created context object during
* the lifetime of this context object, see the description of
* secp256k1_context_preallocated_create for details.
*
* Cloning secp256k1_context_static is not possible, and should not be emulated by
* the caller (e.g., using memcpy). Create a new context instead.
*
* Returns: a newly created context object.
* Args: ctx: an existing context to copy (not secp256k1_context_static).
* In: prealloc: a pointer to a rewritable contiguous block of memory of
* size at least secp256k1_context_preallocated_size(flags)
* bytes, as detailed above.
*/
SECP256K1_API secp256k1_context *secp256k1_context_preallocated_clone(
const secp256k1_context *ctx,
void *prealloc
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_WARN_UNUSED_RESULT;
/** Destroy a secp256k1 context object that has been created in
* caller-provided memory.
*
* The context pointer may not be used afterwards.
*
* The context to destroy must have been created using
* secp256k1_context_preallocated_create or secp256k1_context_preallocated_clone.
* If the context has instead been created using secp256k1_context_create or
* secp256k1_context_clone, the behaviour is undefined. In that case,
* secp256k1_context_destroy must be used instead.
*
* If required, it is the responsibility of the caller to deallocate the block
* of memory properly after this function returns, e.g., by calling free on the
* preallocated pointer given to secp256k1_context_preallocated_create or
* secp256k1_context_preallocated_clone.
*
* Args: ctx: an existing context to destroy, constructed using
* secp256k1_context_preallocated_create or
* secp256k1_context_preallocated_clone
* (i.e., not secp256k1_context_static).
*/
SECP256K1_API void secp256k1_context_preallocated_destroy(
secp256k1_context *ctx
) SECP256K1_ARG_NONNULL(1);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_PREALLOCATED_H */

View File

@ -0,0 +1,113 @@
#ifndef SECP256K1_RECOVERY_H
#define SECP256K1_RECOVERY_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/** Opaque data structured that holds a parsed ECDSA signature,
* supporting pubkey recovery.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 65 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission, use
* the secp256k1_ecdsa_signature_serialize_* and
* secp256k1_ecdsa_signature_parse_* functions.
*
* Furthermore, it is guaranteed that identical signatures (including their
* recoverability) will have identical representation, so they can be
* memcmp'ed.
*/
typedef struct {
unsigned char data[65];
} secp256k1_ecdsa_recoverable_signature;
/** Parse a compact ECDSA signature (64 bytes + recovery id).
*
* Returns: 1 when the signature could be parsed, 0 otherwise
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input64: a pointer to a 64-byte compact signature
* recid: the recovery id (0, 1, 2 or 3)
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_parse_compact(
const secp256k1_context *ctx,
secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *input64,
int recid
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Convert a recoverable signature into a normal signature.
*
* Returns: 1
* Args: ctx: a secp256k1 context object.
* Out: sig: a pointer to a normal signature.
* In: sigin: a pointer to a recoverable signature.
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_convert(
const secp256k1_context *ctx,
secp256k1_ecdsa_signature *sig,
const secp256k1_ecdsa_recoverable_signature *sigin
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an ECDSA signature in compact format (64 bytes + recovery id).
*
* Returns: 1
* Args: ctx: a secp256k1 context object.
* Out: output64: a pointer to a 64-byte array of the compact signature.
* recid: a pointer to an integer to hold the recovery id.
* In: sig: a pointer to an initialized signature object.
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact(
const secp256k1_context *ctx,
unsigned char *output64,
int *recid,
const secp256k1_ecdsa_recoverable_signature *sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Create a recoverable ECDSA signature.
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the secret key was invalid.
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: sig: pointer to an array where the signature will be placed.
* In: msghash32: the 32-byte message hash being signed.
* seckey: pointer to a 32-byte secret key.
* noncefp: pointer to a nonce generation function. If NULL,
* secp256k1_nonce_function_default is used.
* ndata: pointer to arbitrary data used by the nonce generation function
* (can be NULL for secp256k1_nonce_function_default).
*/
SECP256K1_API int secp256k1_ecdsa_sign_recoverable(
const secp256k1_context *ctx,
secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *msghash32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Recover an ECDSA public key from a signature.
*
* Returns: 1: public key successfully recovered (which guarantees a correct signature).
* 0: otherwise.
* Args: ctx: pointer to a context object.
* Out: pubkey: pointer to the recovered public key.
* In: sig: pointer to initialized signature that supports pubkey recovery.
* msghash32: the 32-byte message hash assumed to be signed.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *msghash32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_RECOVERY_H */

View File

@ -0,0 +1,190 @@
#ifndef SECP256K1_SCHNORRSIG_H
#define SECP256K1_SCHNORRSIG_H
#include "secp256k1.h"
#include "secp256k1_extrakeys.h"
#ifdef __cplusplus
extern "C" {
#endif
/** This module implements a variant of Schnorr signatures compliant with
* Bitcoin Improvement Proposal 340 "Schnorr Signatures for secp256k1"
* (https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki).
*/
/** A pointer to a function to deterministically generate a nonce.
*
* Same as secp256k1_nonce function with the exception of accepting an
* additional pubkey argument and not requiring an attempt argument. The pubkey
* argument can protect signature schemes with key-prefixed challenge hash
* inputs against reusing the nonce when signing with the wrong precomputed
* pubkey.
*
* Returns: 1 if a nonce was successfully generated. 0 will cause signing to
* return an error.
* Out: nonce32: pointer to a 32-byte array to be filled by the function
* In: msg: the message being verified. Is NULL if and only if msglen
* is 0.
* msglen: the length of the message
* key32: pointer to a 32-byte secret key (will not be NULL)
* xonly_pk32: the 32-byte serialized xonly pubkey corresponding to key32
* (will not be NULL)
* algo: pointer to an array describing the signature
* algorithm (will not be NULL)
* algolen: the length of the algo array
* data: arbitrary data pointer that is passed through
*
* Except for test cases, this function should compute some cryptographic hash of
* the message, the key, the pubkey, the algorithm description, and data.
*/
typedef int (*secp256k1_nonce_function_hardened)(
unsigned char *nonce32,
const unsigned char *msg,
size_t msglen,
const unsigned char *key32,
const unsigned char *xonly_pk32,
const unsigned char *algo,
size_t algolen,
void *data
);
/** An implementation of the nonce generation function as defined in Bitcoin
* Improvement Proposal 340 "Schnorr Signatures for secp256k1"
* (https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki).
*
* If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
* auxiliary random data as defined in BIP-340. If the data pointer is NULL,
* the nonce derivation procedure follows BIP-340 by setting the auxiliary
* random data to zero. The algo argument must be non-NULL, otherwise the
* function will fail and return 0. The hash will be tagged with algo.
* Therefore, to create BIP-340 compliant signatures, algo must be set to
* "BIP0340/nonce" and algolen to 13.
*/
SECP256K1_API_VAR const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340;
/** Data structure that contains additional arguments for schnorrsig_sign_custom.
*
* A schnorrsig_extraparams structure object can be initialized correctly by
* setting it to SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT.
*
* Members:
* magic: set to SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC at initialization
* and has no other function than making sure the object is
* initialized.
* noncefp: pointer to a nonce generation function. If NULL,
* secp256k1_nonce_function_bip340 is used
* ndata: pointer to arbitrary data used by the nonce generation function
* (can be NULL). If it is non-NULL and
* secp256k1_nonce_function_bip340 is used, then ndata must be a
* pointer to 32-byte auxiliary randomness as per BIP-340.
*/
typedef struct {
unsigned char magic[4];
secp256k1_nonce_function_hardened noncefp;
void *ndata;
} secp256k1_schnorrsig_extraparams;
#define SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC { 0xda, 0x6f, 0xb3, 0x8c }
#define SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT {\
SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC,\
NULL,\
NULL\
}
/** Create a Schnorr signature.
*
* Does _not_ strictly follow BIP-340 because it does not verify the resulting
* signature. Instead, you can manually use secp256k1_schnorrsig_verify and
* abort if it fails.
*
* This function only signs 32-byte messages. If you have messages of a
* different size (or the same size but without a context-specific tag
* prefix), it is recommended to create a 32-byte message hash with
* secp256k1_tagged_sha256 and then sign the hash. Tagged hashing allows
* providing an context-specific tag for domain separation. This prevents
* signatures from being valid in multiple contexts by accident.
*
* Returns 1 on success, 0 on failure.
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: sig64: pointer to a 64-byte array to store the serialized signature.
* In: msg32: the 32-byte message being signed.
* keypair: pointer to an initialized keypair.
* aux_rand32: 32 bytes of fresh randomness. While recommended to provide
* this, it is only supplemental to security and can be NULL. A
* NULL argument is treated the same as an all-zero one. See
* BIP-340 "Default Signing" for a full explanation of this
* argument and for guidance if randomness is expensive.
*/
SECP256K1_API int secp256k1_schnorrsig_sign32(
const secp256k1_context *ctx,
unsigned char *sig64,
const unsigned char *msg32,
const secp256k1_keypair *keypair,
const unsigned char *aux_rand32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Same as secp256k1_schnorrsig_sign32, but DEPRECATED. Will be removed in
* future versions. */
SECP256K1_API int secp256k1_schnorrsig_sign(
const secp256k1_context *ctx,
unsigned char *sig64,
const unsigned char *msg32,
const secp256k1_keypair *keypair,
const unsigned char *aux_rand32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
SECP256K1_DEPRECATED("Use secp256k1_schnorrsig_sign32 instead");
/** Create a Schnorr signature with a more flexible API.
*
* Same arguments as secp256k1_schnorrsig_sign except that it allows signing
* variable length messages and accepts a pointer to an extraparams object that
* allows customizing signing by passing additional arguments.
*
* Equivalent to secp256k1_schnorrsig_sign32(..., aux_rand32) if msglen is 32
* and extraparams is initialized as follows:
* ```
* secp256k1_schnorrsig_extraparams extraparams = SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT;
* extraparams.ndata = (unsigned char*)aux_rand32;
* ```
*
* Returns 1 on success, 0 on failure.
* Args: ctx: pointer to a context object (not secp256k1_context_static).
* Out: sig64: pointer to a 64-byte array to store the serialized signature.
* In: msg: the message being signed. Can only be NULL if msglen is 0.
* msglen: length of the message.
* keypair: pointer to an initialized keypair.
* extraparams: pointer to an extraparams object (can be NULL).
*/
SECP256K1_API int secp256k1_schnorrsig_sign_custom(
const secp256k1_context *ctx,
unsigned char *sig64,
const unsigned char *msg,
size_t msglen,
const secp256k1_keypair *keypair,
secp256k1_schnorrsig_extraparams *extraparams
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(5);
/** Verify a Schnorr signature.
*
* Returns: 1: correct signature
* 0: incorrect signature
* Args: ctx: a secp256k1 context object.
* In: sig64: pointer to the 64-byte signature to verify.
* msg: the message being verified. Can only be NULL if msglen is 0.
* msglen: length of the message
* pubkey: pointer to an x-only public key to verify with (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorrsig_verify(
const secp256k1_context *ctx,
const unsigned char *sig64,
const unsigned char *msg,
size_t msglen,
const secp256k1_xonly_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(5);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_SCHNORRSIG_H */

View File

@ -0,0 +1,12 @@
prefix=@prefix@
exec_prefix=@exec_prefix@
libdir=@libdir@
includedir=@includedir@
Name: libsecp256k1
Description: Optimized C library for EC operations on curve secp256k1
URL: https://github.com/bitcoin-core/secp256k1
Version: @PACKAGE_VERSION@
Cflags: -I${includedir}
Libs: -L${libdir} -lsecp256k1

View File

@ -0,0 +1,156 @@
load("secp256k1_params.sage")
MAX_ORDER = 1000
# Set of (curve) orders we have encountered so far.
orders_done = set()
# Map from (subgroup) orders to [b, int(gen.x), int(gen.y), gen, lambda] for those subgroups.
solutions = {}
# Iterate over curves of the form y^2 = x^3 + B.
for b in range(1, P):
# There are only 6 curves (up to isomorphism) of the form y^2 = x^3 + B. Stop once we have tried all.
if len(orders_done) == 6:
break
E = EllipticCurve(F, [0, b])
print("Analyzing curve y^2 = x^3 + %i" % b)
n = E.order()
# Skip curves with an order we've already tried
if n in orders_done:
print("- Isomorphic to earlier curve")
print()
continue
orders_done.add(n)
# Skip curves isomorphic to the real secp256k1
if n.is_pseudoprime():
assert E.is_isomorphic(C)
print("- Isomorphic to secp256k1")
print()
continue
print("- Finding prime subgroups")
# Map from group_order to a set of independent generators for that order.
curve_gens = {}
for g in E.gens():
# Find what prime subgroups of group generated by g exist.
g_order = g.order()
for f, _ in g.order().factor():
# Skip subgroups that have bad size.
if f < 4:
print(f" - Subgroup of size {f}: too small")
continue
if f > MAX_ORDER:
print(f" - Subgroup of size {f}: too large")
continue
# Construct a generator for that subgroup.
gen = g * (g_order // f)
assert(gen.order() == f)
# Add to set the minimal multiple of gen.
curve_gens.setdefault(f, set()).add(min([j*gen for j in range(1, f)]))
print(f" - Subgroup of size {f}: ok")
for f in sorted(curve_gens.keys()):
print(f"- Constructing group of order {f}")
cbrts = sorted([int(c) for c in Integers(f)(1).nth_root(3, all=true) if c != 1])
gens = list(curve_gens[f])
sol_count = 0
no_endo_count = 0
# Consider all non-zero linear combinations of the independent generators.
for j in range(1, f**len(gens)):
gen = sum(gens[k] * ((j // f**k) % f) for k in range(len(gens)))
assert not gen.is_zero()
assert (f*gen).is_zero()
# Find lambda for endomorphism. Skip if none can be found.
lam = None
for l in cbrts:
if l*gen == E(BETA*gen[0], gen[1]):
lam = l
break
if lam is None:
no_endo_count += 1
else:
sol_count += 1
solutions.setdefault(f, []).append((b, int(gen[0]), int(gen[1]), gen, lam))
print(f" - Found {sol_count} generators (plus {no_endo_count} without endomorphism)")
print()
def output_generator(g, name):
print(f"#define {name} SECP256K1_GE_CONST(\\")
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x,\\" % tuple((int(g[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x,\\" % tuple((int(g[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x,\\" % tuple((int(g[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x\\" % tuple((int(g[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
print(")")
def output_b(b):
print(f"#define SECP256K1_B {int(b)}")
print()
print("To be put in src/group_impl.h:")
print()
print("/* Begin of section generated by sage/gen_exhaustive_groups.sage. */")
for f in sorted(solutions.keys()):
# Use as generator/2 the one with lowest b, and lowest (x, y) generator (interpreted as non-negative integers).
b, _, _, HALF_G, lam = min(solutions[f])
output_generator(2 * HALF_G, f"SECP256K1_G_ORDER_{f}")
print("/** Generator for secp256k1, value 'g' defined in")
print(" * \"Standards for Efficient Cryptography\" (SEC2) 2.7.1.")
print(" */")
output_generator(G, "SECP256K1_G")
print("/* These exhaustive group test orders and generators are chosen such that:")
print(" * - The field size is equal to that of secp256k1, so field code is the same.")
print(" * - The curve equation is of the form y^2=x^3+B for some small constant B.")
print(" * - The subgroup has a generator 2*P, where P.x is as small as possible.")
print(f" * - The subgroup has size less than {MAX_ORDER} to permit exhaustive testing.")
print(" * - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y).")
print(" */")
print("#if defined(EXHAUSTIVE_TEST_ORDER)")
first = True
for f in sorted(solutions.keys()):
b, _, _, _, lam = min(solutions[f])
print(f"# {'if' if first else 'elif'} EXHAUSTIVE_TEST_ORDER == {f}")
first = False
print()
print(f"static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_{f};")
output_b(b)
print()
print("# else")
print("# error No known generator for the specified exhaustive test group order.")
print("# endif")
print("#else")
print()
print("static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G;")
output_b(7)
print()
print("#endif")
print("/* End of section generated by sage/gen_exhaustive_groups.sage. */")
print()
print()
print("To be put in src/scalar_impl.h:")
print()
print("/* Begin of section generated by sage/gen_exhaustive_groups.sage. */")
first = True
for f in sorted(solutions.keys()):
_, _, _, _, lam = min(solutions[f])
print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f))
first = False
print("# define EXHAUSTIVE_TEST_LAMBDA %i" % lam)
print("# else")
print("# error No known lambda for the specified exhaustive test group order.")
print("# endif")
print("/* End of section generated by sage/gen_exhaustive_groups.sage. */")

View File

@ -0,0 +1,114 @@
""" Generates the constants used in secp256k1_scalar_split_lambda.
See the comments for secp256k1_scalar_split_lambda in src/scalar_impl.h for detailed explanations.
"""
load("secp256k1_params.sage")
def inf_norm(v):
"""Returns the infinity norm of a vector."""
return max(map(abs, v))
def gauss_reduction(i1, i2):
v1, v2 = i1.copy(), i2.copy()
while True:
if inf_norm(v2) < inf_norm(v1):
v1, v2 = v2, v1
# This is essentially
# m = round((v1[0]*v2[0] + v1[1]*v2[1]) / (inf_norm(v1)**2))
# (rounding to the nearest integer) without relying on floating point arithmetic.
m = ((v1[0]*v2[0] + v1[1]*v2[1]) + (inf_norm(v1)**2) // 2) // (inf_norm(v1)**2)
if m == 0:
return v1, v2
v2[0] -= m*v1[0]
v2[1] -= m*v1[1]
def find_split_constants_gauss():
"""Find constants for secp256k1_scalar_split_lamdba using gauss reduction."""
(v11, v12), (v21, v22) = gauss_reduction([0, N], [1, int(LAMBDA)])
# We use related vectors in secp256k1_scalar_split_lambda.
A1, B1 = -v21, -v11
A2, B2 = v22, -v21
return A1, B1, A2, B2
def find_split_constants_explicit_tof():
"""Find constants for secp256k1_scalar_split_lamdba using the trace of Frobenius.
See Benjamin Smith: "Easy scalar decompositions for efficient scalar multiplication on
elliptic curves and genus 2 Jacobians" (https://eprint.iacr.org/2013/672), Example 2
"""
assert P % 3 == 1 # The paper says P % 3 == 2 but that appears to be a mistake, see [10].
assert C.j_invariant() == 0
t = C.trace_of_frobenius()
c = Integer(sqrt((4*P - t**2)/3))
A1 = Integer((t - c)/2 - 1)
B1 = c
A2 = Integer((t + c)/2 - 1)
B2 = Integer(1 - (t - c)/2)
# We use a negated b values in secp256k1_scalar_split_lambda.
B1, B2 = -B1, -B2
return A1, B1, A2, B2
A1, B1, A2, B2 = find_split_constants_explicit_tof()
# For extra fun, use an independent method to recompute the constants.
assert (A1, B1, A2, B2) == find_split_constants_gauss()
# PHI : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n.
def PHI(a,b):
return Z(a + LAMBDA*b)
# Check that (A1, B1) and (A2, B2) are in the kernel of PHI.
assert PHI(A1, B1) == Z(0)
assert PHI(A2, B2) == Z(0)
# Check that the parallelogram generated by (A1, A2) and (B1, B2)
# is a fundamental domain by containing exactly N points.
# Since the LHS is the determinant and N != 0, this also checks that
# (A1, A2) and (B1, B2) are linearly independent. By the previous
# assertions, (A1, A2) and (B1, B2) are a basis of the kernel.
assert A1*B2 - B1*A2 == N
# Check that their components are short enough.
assert (A1 + A2)/2 < sqrt(N)
assert B1 < sqrt(N)
assert B2 < sqrt(N)
G1 = round((2**384)*B2/N)
G2 = round((2**384)*(-B1)/N)
def rnddiv2(v):
if v & 1:
v += 1
return v >> 1
def scalar_lambda_split(k):
"""Equivalent to secp256k1_scalar_lambda_split()."""
c1 = rnddiv2((k * G1) >> 383)
c2 = rnddiv2((k * G2) >> 383)
c1 = (c1 * -B1) % N
c2 = (c2 * -B2) % N
r2 = (c1 + c2) % N
r1 = (k + r2 * -LAMBDA) % N
return (r1, r2)
# The result of scalar_lambda_split can depend on the representation of k (mod n).
SPECIAL = (2**383) // G2 + 1
assert scalar_lambda_split(SPECIAL) != scalar_lambda_split(SPECIAL + N)
print(' A1 =', hex(A1))
print(' -B1 =', hex(-B1))
print(' A2 =', hex(A2))
print(' -B2 =', hex(-B2))
print(' =', hex(Z(-B2)))
print(' -LAMBDA =', hex(-LAMBDA))
print(' G1 =', hex(G1))
print(' G2 =', hex(G2))

View File

@ -0,0 +1,353 @@
# This code supports verifying group implementations which have branches
# or conditional statements (like cmovs), by allowing each execution path
# to independently set assumptions on input or intermediary variables.
#
# The general approach is:
# * A constraint is a tuple of two sets of symbolic expressions:
# the first of which are required to evaluate to zero, the second of which
# are required to evaluate to nonzero.
# - A constraint is said to be conflicting if any of its nonzero expressions
# is in the ideal with basis the zero expressions (in other words: when the
# zero expressions imply that one of the nonzero expressions are zero).
# * There is a list of laws that describe the intended behaviour, including
# laws for addition and doubling. Each law is called with the symbolic point
# coordinates as arguments, and returns:
# - A constraint describing the assumptions under which it is applicable,
# called "assumeLaw"
# - A constraint describing the requirements of the law, called "require"
# * Implementations are transliterated into functions that operate as well on
# algebraic input points, and are called once per combination of branches
# executed. Each execution returns:
# - A constraint describing the assumptions this implementation requires
# (such as Z1=1), called "assumeFormula"
# - A constraint describing the assumptions this specific branch requires,
# but which is by construction guaranteed to cover the entire space by
# merging the results from all branches, called "assumeBranch"
# - The result of the computation
# * All combinations of laws with implementation branches are tried, and:
# - If the combination of assumeLaw, assumeFormula, and assumeBranch results
# in a conflict, it means this law does not apply to this branch, and it is
# skipped.
# - For others, we try to prove the require constraints hold, assuming the
# information in assumeLaw + assumeFormula + assumeBranch, and if this does
# not succeed, we fail.
# + To prove an expression is zero, we check whether it belongs to the
# ideal with the assumed zero expressions as basis. This test is exact.
# + To prove an expression is nonzero, we check whether each of its
# factors is contained in the set of nonzero assumptions' factors.
# This test is not exact, so various combinations of original and
# reduced expressions' factors are tried.
# - If we succeed, we print out the assumptions from assumeFormula that
# weren't implied by assumeLaw already. Those from assumeBranch are skipped,
# as we assume that all constraints in it are complementary with each other.
#
# Based on the sage verification scripts used in the Explicit-Formulas Database
# by Tanja Lange and others, see https://hyperelliptic.org/EFD
class fastfrac:
"""Fractions over rings."""
def __init__(self,R,top,bot=1):
"""Construct a fractional, given a ring, a numerator, and denominator."""
self.R = R
if parent(top) == ZZ or parent(top) == R:
self.top = R(top)
self.bot = R(bot)
elif top.__class__ == fastfrac:
self.top = top.top
self.bot = top.bot * bot
else:
self.top = R(numerator(top))
self.bot = R(denominator(top)) * bot
def iszero(self,I):
"""Return whether this fraction is zero given an ideal."""
return self.top in I and self.bot not in I
def reduce(self,assumeZero):
zero = self.R.ideal(list(map(numerator, assumeZero)))
return fastfrac(self.R, zero.reduce(self.top)) / fastfrac(self.R, zero.reduce(self.bot))
def __add__(self,other):
"""Add two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top + self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot + self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __sub__(self,other):
"""Subtract two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top - self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot - self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __neg__(self):
"""Return the negation of a fraction."""
return fastfrac(self.R,-self.top,self.bot)
def __mul__(self,other):
"""Multiply two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.top,self.bot * other.bot)
return NotImplemented
def __rmul__(self,other):
"""Multiply something else with a fraction."""
return self.__mul__(other)
def __truediv__(self,other):
"""Divide two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top,self.bot * other)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot,self.bot * other.top)
return NotImplemented
# Compatibility wrapper for Sage versions based on Python 2
def __div__(self,other):
"""Divide two fractions."""
return self.__truediv__(other)
def __pow__(self,other):
"""Compute a power of a fraction."""
if parent(other) == ZZ:
if other < 0:
# Negative powers require flipping top and bottom
return fastfrac(self.R,self.bot ^ (-other),self.top ^ (-other))
else:
return fastfrac(self.R,self.top ^ other,self.bot ^ other)
return NotImplemented
def __str__(self):
return "fastfrac((" + str(self.top) + ") / (" + str(self.bot) + "))"
def __repr__(self):
return "%s" % self
def numerator(self):
return self.top
class constraints:
"""A set of constraints, consisting of zero and nonzero expressions.
Constraints can either be used to express knowledge or a requirement.
Both the fields zero and nonzero are maps from expressions to description
strings. The expressions that are the keys in zero are required to be zero,
and the expressions that are the keys in nonzero are required to be nonzero.
Note that (a != 0) and (b != 0) is the same as (a*b != 0), so all keys in
nonzero could be multiplied into a single key. This is often much less
efficient to work with though, so we keep them separate inside the
constraints. This allows higher-level code to do fast checks on the individual
nonzero elements, or combine them if needed for stronger checks.
We can't multiply the different zero elements, as it would suffice for one of
the factors to be zero, instead of all of them. Instead, the zero elements are
typically combined into an ideal first.
"""
def __init__(self, **kwargs):
if 'zero' in kwargs:
self.zero = dict(kwargs['zero'])
else:
self.zero = dict()
if 'nonzero' in kwargs:
self.nonzero = dict(kwargs['nonzero'])
else:
self.nonzero = dict()
def negate(self):
return constraints(zero=self.nonzero, nonzero=self.zero)
def map(self, fun):
return constraints(zero={fun(k): v for k, v in self.zero.items()}, nonzero={fun(k): v for k, v in self.nonzero.items()})
def __add__(self, other):
zero = self.zero.copy()
zero.update(other.zero)
nonzero = self.nonzero.copy()
nonzero.update(other.nonzero)
return constraints(zero=zero, nonzero=nonzero)
def __str__(self):
return "constraints(zero=%s,nonzero=%s)" % (self.zero, self.nonzero)
def __repr__(self):
return "%s" % self
def normalize_factor(p):
"""Normalizes the sign of primitive polynomials (as returned by factor())
This function ensures that the polynomial has a positive leading coefficient.
This is necessary because recent sage versions (starting with v9.3 or v9.4,
we don't know) are inconsistent about the placement of the minus sign in
polynomial factorizations:
```
sage: R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex')
sage: R((-2 * (bx - ax)) ^ 1).factor()
(-2) * (bx - ax)
sage: R((-2 * (bx - ax)) ^ 2).factor()
(4) * (-bx + ax)^2
sage: R((-2 * (bx - ax)) ^ 3).factor()
(8) * (-bx + ax)^3
```
"""
# Assert p is not 0 and that its non-zero coeffients are coprime.
# (We could just work with the primitive part p/p.content() but we want to be
# aware if factor() does not return a primitive part in future sage versions.)
assert p.content() == 1
# Ensure that the first non-zero coefficient is positive.
return p if p.lc() > 0 else -p
def conflicts(R, con):
"""Check whether any of the passed non-zero assumptions is implied by the zero assumptions"""
zero = R.ideal(list(map(numerator, con.zero)))
if 1 in zero:
return True
# First a cheap check whether any of the individual nonzero terms conflict on
# their own.
for nonzero in con.nonzero:
if nonzero.iszero(zero):
return True
# It can be the case that entries in the nonzero set do not individually
# conflict with the zero set, but their combination does. For example, knowing
# that either x or y is zero is equivalent to having x*y in the zero set.
# Having x or y individually in the nonzero set is not a conflict, but both
# simultaneously is, so that is the right thing to check for.
if reduce(lambda a,b: a * b, con.nonzero, fastfrac(R, 1)).iszero(zero):
return True
return False
def get_nonzero_set(R, assume):
"""Calculate a simple set of nonzero expressions"""
zero = R.ideal(list(map(numerator, assume.zero)))
nonzero = set()
for nz in map(numerator, assume.nonzero):
for (f,n) in nz.factor():
nonzero.add(normalize_factor(f))
rnz = zero.reduce(nz)
for (f,n) in rnz.factor():
nonzero.add(normalize_factor(f))
return nonzero
def prove_nonzero(R, exprs, assume):
"""Check whether an expression is provably nonzero, given assumptions"""
zero = R.ideal(list(map(numerator, assume.zero)))
nonzero = get_nonzero_set(R, assume)
expl = set()
ok = True
for expr in exprs:
if numerator(expr) in zero:
return (False, [exprs[expr]])
allexprs = reduce(lambda a,b: numerator(a)*numerator(b), exprs, 1)
for (f, n) in allexprs.factor():
if normalize_factor(f) not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for (f, n) in zero.reduce(allexprs).factor():
if normalize_factor(f) not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in numerator(expr).factor():
if normalize_factor(f) not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in zero.reduce(numerator(expr)).factor():
if normalize_factor(f) not in nonzero:
expl.add(exprs[expr])
if expl:
return (False, list(expl))
else:
return (True, None)
def prove_zero(R, exprs, assume):
"""Check whether all of the passed expressions are provably zero, given assumptions"""
r, e = prove_nonzero(R, dict(map(lambda x: (fastfrac(R, x.bot, 1), exprs[x]), exprs)), assume)
if not r:
return (False, list(map(lambda x: "Possibly zero denominator: %s" % x, e)))
zero = R.ideal(list(map(numerator, assume.zero)))
nonzero = prod(x for x in assume.nonzero)
expl = []
for expr in exprs:
if not expr.iszero(zero):
expl.append(exprs[expr])
if not expl:
return (True, None)
return (False, expl)
def describe_extra(R, assume, assumeExtra):
"""Describe what assumptions are added, given existing assumptions"""
zerox = assume.zero.copy()
zerox.update(assumeExtra.zero)
zero = R.ideal(list(map(numerator, assume.zero)))
zeroextra = R.ideal(list(map(numerator, zerox)))
nonzero = get_nonzero_set(R, assume)
ret = set()
# Iterate over the extra zero expressions
for base in assumeExtra.zero:
if base not in zero:
add = []
for (f, n) in numerator(base).factor():
if normalize_factor(f) not in nonzero:
add += ["%s" % normalize_factor(f)]
if add:
ret.add((" * ".join(add)) + " = 0 [%s]" % assumeExtra.zero[base])
# Iterate over the extra nonzero expressions
for nz in assumeExtra.nonzero:
nzr = zeroextra.reduce(numerator(nz))
if nzr not in zeroextra:
for (f,n) in nzr.factor():
if normalize_factor(zeroextra.reduce(f)) not in nonzero:
ret.add("%s != 0" % normalize_factor(zeroextra.reduce(f)))
return ", ".join(x for x in ret)
def check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require):
"""Check a set of zero and nonzero requirements, given a set of zero and nonzero assumptions"""
assume = assumeLaw + assumeAssert + assumeBranch
if conflicts(R, assume):
# This formula does not apply
return (True, None)
describe = describe_extra(R, assumeLaw + assumeBranch, assumeAssert)
if describe != "":
describe = " (assuming " + describe + ")"
ok, msg = prove_zero(R, require.zero, assume)
if not ok:
return (False, "FAIL, %s fails%s" % (str(msg), describe))
res, expl = prove_nonzero(R, require.nonzero, assume)
if not res:
return (False, "FAIL, %s fails%s" % (str(expl), describe))
return (True, "OK%s" % describe)
def concrete_verify(c):
for k in c.zero:
if k != 0:
return (False, c.zero[k])
for k in c.nonzero:
if k == 0:
return (False, c.nonzero[k])
return (True, None)

View File

@ -0,0 +1,285 @@
# Test libsecp256k1' group operation implementations using prover.sage
import sys
load("group_prover.sage")
load("weierstrass_prover.sage")
def formula_secp256k1_gej_double_var(a):
"""libsecp256k1's secp256k1_gej_double_var, used by various addition functions"""
rz = a.Z * a.Y
s = a.Y^2
l = a.X^2
l = l * 3
l = l / 2
t = -s
t = t * a.X
rx = l^2
rx = rx + t
rx = rx + t
s = s^2
t = t + rx
ry = t * l
ry = ry + s
ry = -ry
return jacobianpoint(rx, ry, rz)
def formula_secp256k1_gej_add_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_var"""
if branch == 0:
return (constraints(), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
if branch == 1:
return (constraints(), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
z22 = b.Z^2
z12 = a.Z^2
u1 = a.X * z22
u2 = b.X * z12
s1 = a.Y * z22
s1 = s1 * b.Z
s2 = b.Y * z12
s2 = s2 * a.Z
h = -u1
h = h + u2
i = -s2
i = i + s1
if branch == 2:
r = formula_secp256k1_gej_double_var(a)
return (constraints(), constraints(zero={h : 'h=0', i : 'i=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}), r)
if branch == 3:
return (constraints(), constraints(zero={h : 'h=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={i : 'i!=0'}), point_at_infinity())
t = h * b.Z
rz = a.Z * t
h2 = h^2
h2 = -h2
h3 = h2 * h
t = u1 * h2
rx = i^2
rx = rx + h3
rx = rx + t
rx = rx + t
t = t + rx
ry = t * i
h3 = h3 * s1
ry = ry + h3
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_ge_var, which assume bz==1"""
if branch == 0:
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
if branch == 1:
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
z12 = a.Z^2
u1 = a.X
u2 = b.X * z12
s1 = a.Y
s2 = b.Y * z12
s2 = s2 * a.Z
h = -u1
h = h + u2
i = -s2
i = i + s1
if (branch == 2):
r = formula_secp256k1_gej_double_var(a)
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
if (branch == 3):
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
rz = a.Z * h
h2 = h^2
h2 = -h2
h3 = h2 * h
t = u1 * h2
rx = i^2
rx = rx + h3
rx = rx + t
rx = rx + t
t = t + rx
ry = t * i
h3 = h3 * s1
ry = ry + h3
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_zinv_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_zinv_var"""
bzinv = b.Z^(-1)
if branch == 0:
rinf = b.Infinity
bzinv2 = bzinv^2
bzinv3 = bzinv2 * bzinv
rx = b.X * bzinv2
ry = b.Y * bzinv3
rz = 1
return (constraints(), constraints(nonzero={a.Infinity : 'a_infinite'}), jacobianpoint(rx, ry, rz, rinf))
if branch == 1:
return (constraints(), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
azz = a.Z * bzinv
z12 = azz^2
u1 = a.X
u2 = b.X * z12
s1 = a.Y
s2 = b.Y * z12
s2 = s2 * azz
h = -u1
h = h + u2
i = -s2
i = i + s1
if branch == 2:
r = formula_secp256k1_gej_double_var(a)
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
if branch == 3:
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
rz = a.Z * h
h2 = h^2
h2 = -h2
h3 = h2 * h
t = u1 * h2
rx = i^2
rx = rx + h3
rx = rx + t
rx = rx + t
t = t + rx
ry = t * i
h3 = h3 * s1
ry = ry + h3
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_ge"""
zeroes = {}
nonzeroes = {}
a_infinity = False
if (branch & 2) != 0:
nonzeroes.update({a.Infinity : 'a_infinite'})
a_infinity = True
else:
zeroes.update({a.Infinity : 'a_finite'})
zz = a.Z^2
u1 = a.X
u2 = b.X * zz
s1 = a.Y
s2 = b.Y * zz
s2 = s2 * a.Z
t = u1
t = t + u2
m = s1
m = m + s2
rr = t^2
m_alt = -u2
tt = u1 * m_alt
rr = rr + tt
degenerate = (branch & 1) != 0
if degenerate:
zeroes.update({m : 'm_zero'})
else:
nonzeroes.update({m : 'm_nonzero'})
rr_alt = s1
rr_alt = rr_alt * 2
m_alt = m_alt + u1
if not degenerate:
rr_alt = rr
m_alt = m
n = m_alt^2
q = -t
q = q * n
n = n^2
if degenerate:
n = m
t = rr_alt^2
rz = a.Z * m_alt
t = t + q
rx = t
t = t * 2
t = t + q
t = t * rr_alt
t = t + n
ry = -t
ry = ry / 2
if a_infinity:
rx = b.X
ry = b.Y
rz = 1
if (branch & 4) != 0:
zeroes.update({rz : 'r.z = 0'})
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), point_at_infinity())
else:
nonzeroes.update({rz : 'r.z != 0'})
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge_old(branch, a, b):
"""libsecp256k1's old secp256k1_gej_add_ge, which fails when ay+by=0 but ax!=bx"""
a_infinity = (branch & 1) != 0
zero = {}
nonzero = {}
if a_infinity:
nonzero.update({a.Infinity : 'a_infinite'})
else:
zero.update({a.Infinity : 'a_finite'})
zz = a.Z^2
u1 = a.X
u2 = b.X * zz
s1 = a.Y
s2 = b.Y * zz
s2 = s2 * a.Z
z = a.Z
t = u1
t = t + u2
m = s1
m = m + s2
n = m^2
q = n * t
n = n^2
rr = t^2
t = u1 * u2
t = -t
rr = rr + t
t = rr^2
rz = m * z
infinity = False
if (branch & 2) != 0:
if not a_infinity:
infinity = True
else:
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(nonzero={z : 'conflict_a'}, zero={z : 'conflict_b'}), point_at_infinity())
zero.update({rz : 'r.z=0'})
else:
nonzero.update({rz : 'r.z!=0'})
rz = rz * (0 if a_infinity else 2)
rx = t
q = -q
rx = rx + q
q = q * 3
t = t * 2
t = t + q
t = t * rr
t = t + n
ry = -t
rx = rx * (0 if a_infinity else 4)
ry = ry * (0 if a_infinity else 4)
t = b.X
t = t * (1 if a_infinity else 0)
rx = rx + t
t = b.Y
t = t * (1 if a_infinity else 0)
ry = ry + t
t = (1 if a_infinity else 0)
rz = rz + t
if infinity:
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), point_at_infinity())
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), jacobianpoint(rx, ry, rz))
if __name__ == "__main__":
success = True
success = success & check_symbolic_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var)
success = success & check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var)
success = success & check_symbolic_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var)
success = success & check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 8, formula_secp256k1_gej_add_ge)
success = success & (not check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old))
if len(sys.argv) >= 2 and sys.argv[1] == "--exhaustive":
success = success & check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var, 43)
success = success & check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var, 43)
success = success & check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var, 43)
success = success & check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 8, formula_secp256k1_gej_add_ge, 43)
success = success & (not check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old, 43))
sys.exit(int(not success))

View File

@ -0,0 +1,39 @@
"""Prime order of finite field underlying secp256k1 (2^256 - 2^32 - 977)"""
P = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
"""Finite field underlying secp256k1"""
F = FiniteField(P)
"""Elliptic curve secp256k1: y^2 = x^3 + 7"""
C = EllipticCurve([F(0), F(7)])
"""Base point of secp256k1"""
G = C.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
if int(G[1]) & 1:
# G.y is even
G = -G
"""Prime order of secp256k1"""
N = C.order()
"""Finite field of scalars of secp256k1"""
Z = FiniteField(N)
""" Beta value of secp256k1 non-trivial endomorphism: lambda * (x, y) = (beta * x, y)"""
BETA = F(2)^((P-1)/3)
""" Lambda value of secp256k1 non-trivial endomorphism: lambda * (x, y) = (beta * x, y)"""
LAMBDA = Z(3)^((N-1)/3)
assert is_prime(P)
assert is_prime(N)
assert BETA != F(1)
assert BETA^3 == F(1)
assert BETA^2 + BETA + 1 == 0
assert LAMBDA != Z(1)
assert LAMBDA^3 == Z(1)
assert LAMBDA^2 + LAMBDA + 1 == 0
assert Integer(LAMBDA)*G == C(BETA*G[0], G[1])

View File

@ -0,0 +1,275 @@
# Prover implementation for Weierstrass curves of the form
# y^2 = x^3 + A * x + B, specifically with a = 0 and b = 7, with group laws
# operating on affine and Jacobian coordinates, including the point at infinity
# represented by a 4th variable in coordinates.
load("group_prover.sage")
class affinepoint:
def __init__(self, x, y, infinity=0):
self.x = x
self.y = y
self.infinity = infinity
def __str__(self):
return "affinepoint(x=%s,y=%s,inf=%s)" % (self.x, self.y, self.infinity)
class jacobianpoint:
def __init__(self, x, y, z, infinity=0):
self.X = x
self.Y = y
self.Z = z
self.Infinity = infinity
def __str__(self):
return "jacobianpoint(X=%s,Y=%s,Z=%s,inf=%s)" % (self.X, self.Y, self.Z, self.Infinity)
def point_at_infinity():
return jacobianpoint(1, 1, 1, 1)
def negate(p):
if p.__class__ == affinepoint:
return affinepoint(p.x, -p.y)
if p.__class__ == jacobianpoint:
return jacobianpoint(p.X, -p.Y, p.Z)
assert(False)
def on_weierstrass_curve(A, B, p):
"""Return a set of zero-expressions for an affine point to be on the curve"""
return constraints(zero={p.x^3 + A*p.x + B - p.y^2: 'on_curve'})
def tangential_to_weierstrass_curve(A, B, p12, p3):
"""Return a set of zero-expressions for ((x12,y12),(x3,y3)) to be a line that is tangential to the curve at (x12,y12)"""
return constraints(zero={
(p12.y - p3.y) * (p12.y * 2) - (p12.x^2 * 3 + A) * (p12.x - p3.x): 'tangential_to_curve'
})
def colinear(p1, p2, p3):
"""Return a set of zero-expressions for ((x1,y1),(x2,y2),(x3,y3)) to be collinear"""
return constraints(zero={
(p1.y - p2.y) * (p1.x - p3.x) - (p1.y - p3.y) * (p1.x - p2.x): 'colinear_1',
(p2.y - p3.y) * (p2.x - p1.x) - (p2.y - p1.y) * (p2.x - p3.x): 'colinear_2',
(p3.y - p1.y) * (p3.x - p2.x) - (p3.y - p2.y) * (p3.x - p1.x): 'colinear_3'
})
def good_affine_point(p):
return constraints(nonzero={p.x : 'nonzero_x', p.y : 'nonzero_y'})
def good_jacobian_point(p):
return constraints(nonzero={p.X : 'nonzero_X', p.Y : 'nonzero_Y', p.Z^6 : 'nonzero_Z'})
def good_point(p):
return constraints(nonzero={p.Z^6 : 'nonzero_X'})
def finite(p, *affine_fns):
con = good_point(p) + constraints(zero={p.Infinity : 'finite_point'})
if p.Z != 0:
return con + reduce(lambda a, b: a + b, (f(affinepoint(p.X / p.Z^2, p.Y / p.Z^3)) for f in affine_fns), con)
else:
return con
def infinite(p):
return constraints(nonzero={p.Infinity : 'infinite_point'})
def law_jacobian_weierstrass_add(A, B, pa, pb, pA, pB, pC):
"""Check whether the passed set of coordinates is a valid Jacobian add, given assumptions"""
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(nonzero={pa.x - pb.x : 'different_x'}))
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
colinear(pa, pb, negate(pc))))
return (assumeLaw, require)
def law_jacobian_weierstrass_double(A, B, pa, pb, pA, pB, pC):
"""Check whether the passed set of coordinates is a valid Jacobian doubling, given assumptions"""
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(zero={pa.x - pb.x : 'equal_x', pa.y - pb.y : 'equal_y'}))
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
tangential_to_weierstrass_curve(A, B, pa, negate(pc))))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_opposites(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(zero={pa.x - pb.x : 'equal_x', pa.y + pb.y : 'opposite_y'}))
require = infinite(pC)
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_a(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pb) +
infinite(pA) +
finite(pB))
require = finite(pC, lambda pc: constraints(zero={pc.x - pb.x : 'c.x=b.x', pc.y - pb.y : 'c.y=b.y'}))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_b(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
infinite(pB) +
finite(pA))
require = finite(pC, lambda pc: constraints(zero={pc.x - pa.x : 'c.x=a.x', pc.y - pa.y : 'c.y=a.y'}))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_ab(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
infinite(pA) +
infinite(pB))
require = infinite(pC)
return (assumeLaw, require)
laws_jacobian_weierstrass = {
'add': law_jacobian_weierstrass_add,
'double': law_jacobian_weierstrass_double,
'add_opposite': law_jacobian_weierstrass_add_opposites,
'add_infinite_a': law_jacobian_weierstrass_add_infinite_a,
'add_infinite_b': law_jacobian_weierstrass_add_infinite_b,
'add_infinite_ab': law_jacobian_weierstrass_add_infinite_ab
}
def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p):
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field"""
F = Integers(p)
print("Formula %s on Z%i:" % (name, p))
points = []
for x in range(0, p):
for y in range(0, p):
point = affinepoint(F(x), F(y))
r, e = concrete_verify(on_weierstrass_curve(A, B, point))
if r:
points.append(point)
ret = True
for za in range(1, p):
for zb in range(1, p):
for pa in points:
for pb in points:
for ia in range(2):
for ib in range(2):
pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia)
pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib)
for branch in range(0, branches):
assumeAssert, assumeBranch, pC = formula(branch, pA, pB)
pC.X = F(pC.X)
pC.Y = F(pC.Y)
pC.Z = F(pC.Z)
pC.Infinity = F(pC.Infinity)
r, e = concrete_verify(assumeAssert + assumeBranch)
if r:
match = False
for key in laws_jacobian_weierstrass:
assumeLaw, require = laws_jacobian_weierstrass[key](A, B, pa, pb, pA, pB, pC)
r, e = concrete_verify(assumeLaw)
if r:
if match:
print(" multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity))
else:
match = True
r, e = concrete_verify(require)
if not r:
ret = False
print(" failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e))
print()
return ret
def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC):
assumeLaw, require = f(A, B, pa, pb, pA, pB, pC)
return check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require)
def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula):
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve symbolically"""
R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex')
lift = lambda x: fastfrac(R,x)
ax = lift(ax)
ay = lift(ay)
Az = lift(Az)
bx = lift(bx)
by = lift(by)
Bz = lift(Bz)
Ai = lift(Ai)
Bi = lift(Bi)
pa = affinepoint(ax, ay, Ai)
pb = affinepoint(bx, by, Bi)
pA = jacobianpoint(ax * Az^2, ay * Az^3, Az, Ai)
pB = jacobianpoint(bx * Bz^2, by * Bz^3, Bz, Bi)
res = {}
for key in laws_jacobian_weierstrass:
res[key] = []
print("Formula " + name + ":")
count = 0
ret = True
for branch in range(branches):
assumeFormula, assumeBranch, pC = formula(branch, pA, pB)
assumeBranch = assumeBranch.map(lift)
assumeFormula = assumeFormula.map(lift)
pC.X = lift(pC.X)
pC.Y = lift(pC.Y)
pC.Z = lift(pC.Z)
pC.Infinity = lift(pC.Infinity)
for key in laws_jacobian_weierstrass:
success, msg = check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC)
if not success:
ret = False
res[key].append((msg, branch))
for key in res:
print(" %s:" % key)
val = res[key]
for x in val:
if x[0] is not None:
print(" branch %i: %s" % (x[1], x[0]))
print()
return ret

View File

@ -0,0 +1,162 @@
# Must be included before CMAKE_INSTALL_INCLUDEDIR is used.
include(GNUInstallDirs)
add_library(secp256k1_precomputed OBJECT EXCLUDE_FROM_ALL
precomputed_ecmult.c
precomputed_ecmult_gen.c
)
# Add objects explicitly rather than linking to the object libs to keep them
# from being exported.
add_library(secp256k1 secp256k1.c $<TARGET_OBJECTS:secp256k1_precomputed>)
add_library(secp256k1_asm INTERFACE)
if(SECP256K1_ASM STREQUAL "arm32")
add_library(secp256k1_asm_arm OBJECT EXCLUDE_FROM_ALL)
target_sources(secp256k1_asm_arm PUBLIC
asm/field_10x26_arm.s
)
target_sources(secp256k1 PRIVATE $<TARGET_OBJECTS:secp256k1_asm_arm>)
target_link_libraries(secp256k1_asm INTERFACE secp256k1_asm_arm)
endif()
# Define our export symbol only for Win32 and only for shared libs.
# This matches libtool's usage of DLL_EXPORT
if(WIN32)
set_target_properties(secp256k1 PROPERTIES DEFINE_SYMBOL "DLL_EXPORT")
endif()
# Object libs don't know if they're being built for a shared or static lib.
# Grab the PIC property from secp256k1 which knows.
get_target_property(use_pic secp256k1 POSITION_INDEPENDENT_CODE)
set_target_properties(secp256k1_precomputed PROPERTIES POSITION_INDEPENDENT_CODE ${use_pic})
target_include_directories(secp256k1 INTERFACE
# Add the include path for parent projects so that they don't have to manually add it.
$<BUILD_INTERFACE:$<$<NOT:$<BOOL:${PROJECT_IS_TOP_LEVEL}>>:${PROJECT_SOURCE_DIR}/include>>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>
)
# This emulates Libtool to make sure Libtool and CMake agree on the ABI version,
# see below "Calculate the version variables" in build-aux/ltmain.sh.
math(EXPR ${PROJECT_NAME}_soversion "${${PROJECT_NAME}_LIB_VERSION_CURRENT} - ${${PROJECT_NAME}_LIB_VERSION_AGE}")
set_target_properties(secp256k1 PROPERTIES
SOVERSION ${${PROJECT_NAME}_soversion}
)
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
set_target_properties(secp256k1 PROPERTIES
VERSION ${${PROJECT_NAME}_soversion}.${${PROJECT_NAME}_LIB_VERSION_AGE}.${${PROJECT_NAME}_LIB_VERSION_REVISION}
)
elseif(APPLE)
if(CMAKE_VERSION VERSION_GREATER_EQUAL 3.17)
math(EXPR ${PROJECT_NAME}_compatibility_version "${${PROJECT_NAME}_LIB_VERSION_CURRENT} + 1")
set_target_properties(secp256k1 PROPERTIES
MACHO_COMPATIBILITY_VERSION ${${PROJECT_NAME}_compatibility_version}
MACHO_CURRENT_VERSION ${${PROJECT_NAME}_compatibility_version}.${${PROJECT_NAME}_LIB_VERSION_REVISION}
)
unset(${PROJECT_NAME}_compatibility_version)
elseif(BUILD_SHARED_LIBS)
message(WARNING
"The 'compatibility version' and 'current version' values of the DYLIB "
"will diverge from the values set by the GNU Libtool. To ensure "
"compatibility, it is recommended to upgrade CMake to at least version 3.17."
)
endif()
elseif(CMAKE_SYSTEM_NAME STREQUAL "Windows")
set(${PROJECT_NAME}_windows "secp256k1")
if(MSVC)
set(${PROJECT_NAME}_windows "${PROJECT_NAME}")
endif()
set_target_properties(secp256k1 PROPERTIES
ARCHIVE_OUTPUT_NAME "${${PROJECT_NAME}_windows}"
RUNTIME_OUTPUT_NAME "${${PROJECT_NAME}_windows}-${${PROJECT_NAME}_soversion}"
)
unset(${PROJECT_NAME}_windows)
endif()
unset(${PROJECT_NAME}_soversion)
if(SECP256K1_BUILD_BENCHMARK)
add_executable(bench bench.c)
target_link_libraries(bench secp256k1)
add_executable(bench_internal bench_internal.c)
target_link_libraries(bench_internal secp256k1_precomputed secp256k1_asm)
add_executable(bench_ecmult bench_ecmult.c)
target_link_libraries(bench_ecmult secp256k1_precomputed secp256k1_asm)
endif()
if(SECP256K1_BUILD_TESTS)
add_executable(noverify_tests tests.c)
target_link_libraries(noverify_tests secp256k1_precomputed secp256k1_asm)
add_test(NAME noverify_tests COMMAND noverify_tests)
if(NOT CMAKE_BUILD_TYPE STREQUAL "Coverage")
add_executable(tests tests.c)
target_compile_definitions(tests PRIVATE VERIFY)
target_link_libraries(tests secp256k1_precomputed secp256k1_asm)
add_test(NAME tests COMMAND tests)
endif()
endif()
if(SECP256K1_BUILD_EXHAUSTIVE_TESTS)
# Note: do not include secp256k1_precomputed in exhaustive_tests (it uses runtime-generated tables).
add_executable(exhaustive_tests tests_exhaustive.c)
target_link_libraries(exhaustive_tests secp256k1_asm)
target_compile_definitions(exhaustive_tests PRIVATE $<$<NOT:$<CONFIG:Coverage>>:VERIFY>)
add_test(NAME exhaustive_tests COMMAND exhaustive_tests)
endif()
if(SECP256K1_BUILD_CTIME_TESTS)
add_executable(ctime_tests ctime_tests.c)
target_link_libraries(ctime_tests secp256k1)
endif()
if(SECP256K1_INSTALL)
install(TARGETS secp256k1
EXPORT ${PROJECT_NAME}-targets
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
)
set(${PROJECT_NAME}_headers
"${PROJECT_SOURCE_DIR}/include/secp256k1.h"
"${PROJECT_SOURCE_DIR}/include/secp256k1_preallocated.h"
)
if(SECP256K1_ENABLE_MODULE_ECDH)
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_ecdh.h")
endif()
if(SECP256K1_ENABLE_MODULE_RECOVERY)
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_recovery.h")
endif()
if(SECP256K1_ENABLE_MODULE_EXTRAKEYS)
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_extrakeys.h")
endif()
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_schnorrsig.h")
endif()
install(FILES ${${PROJECT_NAME}_headers}
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)
install(EXPORT ${PROJECT_NAME}-targets
FILE ${PROJECT_NAME}-targets.cmake
NAMESPACE ${PROJECT_NAME}::
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
)
include(CMakePackageConfigHelpers)
configure_package_config_file(
${PROJECT_SOURCE_DIR}/cmake/config.cmake.in
${PROJECT_NAME}-config.cmake
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
NO_SET_AND_CHECK_MACRO
)
write_basic_package_version_file(${PROJECT_NAME}-config-version.cmake
COMPATIBILITY SameMinorVersion
)
install(
FILES
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}-config.cmake
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}-config-version.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
)
endif()

View File

@ -0,0 +1,915 @@
@ vim: set tabstop=8 softtabstop=8 shiftwidth=8 noexpandtab syntax=armasm:
/***********************************************************************
* Copyright (c) 2014 Wladimir J. van der Laan *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
/*
ARM implementation of field_10x26 inner loops.
Note:
- To avoid unnecessary loads and make use of available registers, two
'passes' have every time been interleaved, with the odd passes accumulating c' and d'
which will be added to c and d respectively in the even passes
*/
.syntax unified
@ eabi attributes - see readelf -A
.eabi_attribute 24, 1 @ Tag_ABI_align_needed = 8-byte
.eabi_attribute 25, 1 @ Tag_ABI_align_preserved = 8-byte, except leaf SP
.text
@ Field constants
.set field_R0, 0x3d10
.set field_R1, 0x400
.set field_not_M, 0xfc000000 @ ~M = ~0x3ffffff
.align 2
.global secp256k1_fe_mul_inner
.type secp256k1_fe_mul_inner, %function
.hidden secp256k1_fe_mul_inner
@ Arguments:
@ r0 r Restrict: can overlap with a, not with b
@ r1 a
@ r2 b
@ Stack (total 4+10*4 = 44)
@ sp + #0 saved 'r' pointer
@ sp + #4 + 4*X t0,t1,t2,t3,t4,t5,t6,t7,u8,t9
secp256k1_fe_mul_inner:
stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r14}
sub sp, sp, #48 @ frame=44 + alignment
str r0, [sp, #0] @ save result address, we need it only at the end
/******************************************
* Main computation code.
******************************************
Allocation:
r0,r14,r7,r8 scratch
r1 a (pointer)
r2 b (pointer)
r3:r4 c
r5:r6 d
r11:r12 c'
r9:r10 d'
Note: do not write to r[] here, it may overlap with a[]
*/
/* A - interleaved with B */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #9*4] @ b[9]
ldr r0, [r1, #1*4] @ a[1]
umull r5, r6, r7, r8 @ d = a[0] * b[9]
ldr r14, [r2, #8*4] @ b[8]
umull r9, r10, r0, r8 @ d' = a[1] * b[9]
ldr r7, [r1, #2*4] @ a[2]
umlal r5, r6, r0, r14 @ d += a[1] * b[8]
ldr r8, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r14 @ d' += a[2] * b[8]
ldr r0, [r1, #3*4] @ a[3]
umlal r5, r6, r7, r8 @ d += a[2] * b[7]
ldr r14, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r8 @ d' += a[3] * b[7]
ldr r7, [r1, #4*4] @ a[4]
umlal r5, r6, r0, r14 @ d += a[3] * b[6]
ldr r8, [r2, #5*4] @ b[5]
umlal r9, r10, r7, r14 @ d' += a[4] * b[6]
ldr r0, [r1, #5*4] @ a[5]
umlal r5, r6, r7, r8 @ d += a[4] * b[5]
ldr r14, [r2, #4*4] @ b[4]
umlal r9, r10, r0, r8 @ d' += a[5] * b[5]
ldr r7, [r1, #6*4] @ a[6]
umlal r5, r6, r0, r14 @ d += a[5] * b[4]
ldr r8, [r2, #3*4] @ b[3]
umlal r9, r10, r7, r14 @ d' += a[6] * b[4]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r8 @ d += a[6] * b[3]
ldr r14, [r2, #2*4] @ b[2]
umlal r9, r10, r0, r8 @ d' += a[7] * b[3]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r14 @ d += a[7] * b[2]
ldr r8, [r2, #1*4] @ b[1]
umlal r9, r10, r7, r14 @ d' += a[8] * b[2]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r8 @ d += a[8] * b[1]
ldr r14, [r2, #0*4] @ b[0]
umlal r9, r10, r0, r8 @ d' += a[9] * b[1]
ldr r7, [r1, #0*4] @ a[0]
umlal r5, r6, r0, r14 @ d += a[9] * b[0]
@ r7,r14 used in B
bic r0, r5, field_not_M @ t9 = d & M
str r0, [sp, #4 + 4*9]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
/* B */
umull r3, r4, r7, r14 @ c = a[0] * b[0]
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u0 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u0 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t0 = c & M
str r14, [sp, #4 + 0*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u0 * R1
umlal r3, r4, r0, r14
/* C - interleaved with D */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #2*4] @ b[2]
ldr r14, [r2, #1*4] @ b[1]
umull r11, r12, r7, r8 @ c' = a[0] * b[2]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[1] * b[1]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[2] * b[0]
ldr r0, [r1, #3*4] @ a[3]
umlal r5, r6, r7, r14 @ d += a[2] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[3] * b[9]
ldr r7, [r1, #4*4] @ a[4]
umlal r5, r6, r0, r8 @ d += a[3] * b[8]
ldr r14, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r8 @ d' += a[4] * b[8]
ldr r0, [r1, #5*4] @ a[5]
umlal r5, r6, r7, r14 @ d += a[4] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r14 @ d' += a[5] * b[7]
ldr r7, [r1, #6*4] @ a[6]
umlal r5, r6, r0, r8 @ d += a[5] * b[6]
ldr r14, [r2, #5*4] @ b[5]
umlal r9, r10, r7, r8 @ d' += a[6] * b[6]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r14 @ d += a[6] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r9, r10, r0, r14 @ d' += a[7] * b[5]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r8 @ d += a[7] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r9, r10, r7, r8 @ d' += a[8] * b[4]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r9, r10, r0, r14 @ d' += a[9] * b[3]
umlal r5, r6, r0, r8 @ d += a[9] * b[2]
bic r0, r5, field_not_M @ u1 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u1 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t1 = c & M
str r14, [sp, #4 + 1*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u1 * R1
umlal r3, r4, r0, r14
/* D */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u2 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u2 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t2 = c & M
str r14, [sp, #4 + 2*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u2 * R1
umlal r3, r4, r0, r14
/* E - interleaved with F */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #4*4] @ b[4]
umull r11, r12, r7, r8 @ c' = a[0] * b[4]
ldr r8, [r2, #3*4] @ b[3]
umlal r3, r4, r7, r8 @ c += a[0] * b[3]
ldr r7, [r1, #1*4] @ a[1]
umlal r11, r12, r7, r8 @ c' += a[1] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r3, r4, r7, r8 @ c += a[1] * b[2]
ldr r7, [r1, #2*4] @ a[2]
umlal r11, r12, r7, r8 @ c' += a[2] * b[2]
ldr r8, [r2, #1*4] @ b[1]
umlal r3, r4, r7, r8 @ c += a[2] * b[1]
ldr r7, [r1, #3*4] @ a[3]
umlal r11, r12, r7, r8 @ c' += a[3] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r3, r4, r7, r8 @ c += a[3] * b[0]
ldr r7, [r1, #4*4] @ a[4]
umlal r11, r12, r7, r8 @ c' += a[4] * b[0]
ldr r8, [r2, #9*4] @ b[9]
umlal r5, r6, r7, r8 @ d += a[4] * b[9]
ldr r7, [r1, #5*4] @ a[5]
umull r9, r10, r7, r8 @ d' = a[5] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umlal r5, r6, r7, r8 @ d += a[5] * b[8]
ldr r7, [r1, #6*4] @ a[6]
umlal r9, r10, r7, r8 @ d' += a[6] * b[8]
ldr r8, [r2, #7*4] @ b[7]
umlal r5, r6, r7, r8 @ d += a[6] * b[7]
ldr r7, [r1, #7*4] @ a[7]
umlal r9, r10, r7, r8 @ d' += a[7] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r5, r6, r7, r8 @ d += a[7] * b[6]
ldr r7, [r1, #8*4] @ a[8]
umlal r9, r10, r7, r8 @ d' += a[8] * b[6]
ldr r8, [r2, #5*4] @ b[5]
umlal r5, r6, r7, r8 @ d += a[8] * b[5]
ldr r7, [r1, #9*4] @ a[9]
umlal r9, r10, r7, r8 @ d' += a[9] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r5, r6, r7, r8 @ d += a[9] * b[4]
bic r0, r5, field_not_M @ u3 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u3 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t3 = c & M
str r14, [sp, #4 + 3*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u3 * R1
umlal r3, r4, r0, r14
/* F */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u4 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u4 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t4 = c & M
str r14, [sp, #4 + 4*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u4 * R1
umlal r3, r4, r0, r14
/* G - interleaved with H */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #6*4] @ b[6]
ldr r14, [r2, #5*4] @ b[5]
umull r11, r12, r7, r8 @ c' = a[0] * b[6]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r11, r12, r0, r14 @ c' += a[1] * b[5]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r11, r12, r7, r8 @ c' += a[2] * b[4]
ldr r0, [r1, #3*4] @ a[3]
umlal r3, r4, r7, r14 @ c += a[2] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r11, r12, r0, r14 @ c' += a[3] * b[3]
ldr r7, [r1, #4*4] @ a[4]
umlal r3, r4, r0, r8 @ c += a[3] * b[2]
ldr r14, [r2, #1*4] @ b[1]
umlal r11, r12, r7, r8 @ c' += a[4] * b[2]
ldr r0, [r1, #5*4] @ a[5]
umlal r3, r4, r7, r14 @ c += a[4] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[5] * b[1]
ldr r7, [r1, #6*4] @ a[6]
umlal r3, r4, r0, r8 @ c += a[5] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[6] * b[0]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r14 @ d += a[6] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[7] * b[9]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r8 @ d += a[7] * b[8]
ldr r14, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r8 @ d' += a[8] * b[8]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r14 @ d' += a[9] * b[7]
umlal r5, r6, r0, r8 @ d += a[9] * b[6]
bic r0, r5, field_not_M @ u5 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u5 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t5 = c & M
str r14, [sp, #4 + 5*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u5 * R1
umlal r3, r4, r0, r14
/* H */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u6 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u6 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t6 = c & M
str r14, [sp, #4 + 6*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u6 * R1
umlal r3, r4, r0, r14
/* I - interleaved with J */
ldr r8, [r2, #8*4] @ b[8]
ldr r7, [r1, #0*4] @ a[0]
ldr r14, [r2, #7*4] @ b[7]
umull r11, r12, r7, r8 @ c' = a[0] * b[8]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r11, r12, r0, r14 @ c' += a[1] * b[7]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[6]
ldr r14, [r2, #5*4] @ b[5]
umlal r11, r12, r7, r8 @ c' += a[2] * b[6]
ldr r0, [r1, #3*4] @ a[3]
umlal r3, r4, r7, r14 @ c += a[2] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r11, r12, r0, r14 @ c' += a[3] * b[5]
ldr r7, [r1, #4*4] @ a[4]
umlal r3, r4, r0, r8 @ c += a[3] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r11, r12, r7, r8 @ c' += a[4] * b[4]
ldr r0, [r1, #5*4] @ a[5]
umlal r3, r4, r7, r14 @ c += a[4] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r11, r12, r0, r14 @ c' += a[5] * b[3]
ldr r7, [r1, #6*4] @ a[6]
umlal r3, r4, r0, r8 @ c += a[5] * b[2]
ldr r14, [r2, #1*4] @ b[1]
umlal r11, r12, r7, r8 @ c' += a[6] * b[2]
ldr r0, [r1, #7*4] @ a[7]
umlal r3, r4, r7, r14 @ c += a[6] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[7] * b[1]
ldr r7, [r1, #8*4] @ a[8]
umlal r3, r4, r0, r8 @ c += a[7] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[8] * b[0]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[9] * b[9]
umlal r5, r6, r0, r8 @ d += a[9] * b[8]
bic r0, r5, field_not_M @ u7 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u7 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t7 = c & M
str r14, [sp, #4 + 7*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u7 * R1
umlal r3, r4, r0, r14
/* J */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u8 = d & M
str r0, [sp, #4 + 8*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u8 * R0
umlal r3, r4, r0, r14
/******************************************
* compute and write back result
******************************************
Allocation:
r0 r
r3:r4 c
r5:r6 d
r7 t0
r8 t1
r9 t2
r11 u8
r12 t9
r1,r2,r10,r14 scratch
Note: do not read from a[] after here, it may overlap with r[]
*/
ldr r0, [sp, #0]
add r1, sp, #4 + 3*4 @ r[3..7] = t3..7, r11=u8, r12=t9
ldmia r1, {r2,r7,r8,r9,r10,r11,r12}
add r1, r0, #3*4
stmia r1, {r2,r7,r8,r9,r10}
bic r2, r3, field_not_M @ r[8] = c & M
str r2, [r0, #8*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u8 * R1
umlal r3, r4, r11, r14
movw r14, field_R0 @ c += d * R0
umlal r3, r4, r5, r14
adds r3, r3, r12 @ c += t9
adc r4, r4, #0
add r1, sp, #4 + 0*4 @ r7,r8,r9 = t0,t1,t2
ldmia r1, {r7,r8,r9}
ubfx r2, r3, #0, #22 @ r[9] = c & (M >> 4)
str r2, [r0, #9*4]
mov r3, r3, lsr #22 @ c >>= 22
orr r3, r3, r4, asl #10
mov r4, r4, lsr #22
movw r14, field_R1 << 4 @ c += d * (R1 << 4)
umlal r3, r4, r5, r14
movw r14, field_R0 >> 4 @ d = c * (R0 >> 4) + t0 (64x64 multiply+add)
umull r5, r6, r3, r14 @ d = c.lo * (R0 >> 4)
adds r5, r5, r7 @ d.lo += t0
mla r6, r14, r4, r6 @ d.hi += c.hi * (R0 >> 4)
adc r6, r6, 0 @ d.hi += carry
bic r2, r5, field_not_M @ r[0] = d & M
str r2, [r0, #0*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R1 >> 4 @ d += c * (R1 >> 4) + t1 (64x64 multiply+add)
umull r1, r2, r3, r14 @ tmp = c.lo * (R1 >> 4)
adds r5, r5, r8 @ d.lo += t1
adc r6, r6, #0 @ d.hi += carry
adds r5, r5, r1 @ d.lo += tmp.lo
mla r2, r14, r4, r2 @ tmp.hi += c.hi * (R1 >> 4)
adc r6, r6, r2 @ d.hi += carry + tmp.hi
bic r2, r5, field_not_M @ r[1] = d & M
str r2, [r0, #1*4]
mov r5, r5, lsr #26 @ d >>= 26 (ignore hi)
orr r5, r5, r6, asl #6
add r5, r5, r9 @ d += t2
str r5, [r0, #2*4] @ r[2] = d
add sp, sp, #48
ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}
.size secp256k1_fe_mul_inner, .-secp256k1_fe_mul_inner
.align 2
.global secp256k1_fe_sqr_inner
.type secp256k1_fe_sqr_inner, %function
.hidden secp256k1_fe_sqr_inner
@ Arguments:
@ r0 r Can overlap with a
@ r1 a
@ Stack (total 4+10*4 = 44)
@ sp + #0 saved 'r' pointer
@ sp + #4 + 4*X t0,t1,t2,t3,t4,t5,t6,t7,u8,t9
secp256k1_fe_sqr_inner:
stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r14}
sub sp, sp, #48 @ frame=44 + alignment
str r0, [sp, #0] @ save result address, we need it only at the end
/******************************************
* Main computation code.
******************************************
Allocation:
r0,r14,r2,r7,r8 scratch
r1 a (pointer)
r3:r4 c
r5:r6 d
r11:r12 c'
r9:r10 d'
Note: do not write to r[] here, it may overlap with a[]
*/
/* A interleaved with B */
ldr r0, [r1, #1*4] @ a[1]*2
ldr r7, [r1, #0*4] @ a[0]
mov r0, r0, asl #1
ldr r14, [r1, #9*4] @ a[9]
umull r3, r4, r7, r7 @ c = a[0] * a[0]
ldr r8, [r1, #8*4] @ a[8]
mov r7, r7, asl #1
umull r5, r6, r7, r14 @ d = a[0]*2 * a[9]
ldr r7, [r1, #2*4] @ a[2]*2
umull r9, r10, r0, r14 @ d' = a[1]*2 * a[9]
ldr r14, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r8 @ d += a[1]*2 * a[8]
mov r7, r7, asl #1
ldr r0, [r1, #3*4] @ a[3]*2
umlal r9, r10, r7, r8 @ d' += a[2]*2 * a[8]
ldr r8, [r1, #6*4] @ a[6]
umlal r5, r6, r7, r14 @ d += a[2]*2 * a[7]
mov r0, r0, asl #1
ldr r7, [r1, #4*4] @ a[4]*2
umlal r9, r10, r0, r14 @ d' += a[3]*2 * a[7]
ldr r14, [r1, #5*4] @ a[5]
mov r7, r7, asl #1
umlal r5, r6, r0, r8 @ d += a[3]*2 * a[6]
umlal r9, r10, r7, r8 @ d' += a[4]*2 * a[6]
umlal r5, r6, r7, r14 @ d += a[4]*2 * a[5]
umlal r9, r10, r14, r14 @ d' += a[5] * a[5]
bic r0, r5, field_not_M @ t9 = d & M
str r0, [sp, #4 + 9*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
/* B */
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u0 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u0 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t0 = c & M
str r14, [sp, #4 + 0*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u0 * R1
umlal r3, r4, r0, r14
/* C interleaved with D */
ldr r0, [r1, #0*4] @ a[0]*2
ldr r14, [r1, #1*4] @ a[1]
mov r0, r0, asl #1
ldr r8, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r14 @ c += a[0]*2 * a[1]
mov r7, r8, asl #1 @ a[2]*2
umull r11, r12, r14, r14 @ c' = a[1] * a[1]
ldr r14, [r1, #9*4] @ a[9]
umlal r11, r12, r0, r8 @ c' += a[0]*2 * a[2]
ldr r0, [r1, #3*4] @ a[3]*2
ldr r8, [r1, #8*4] @ a[8]
umlal r5, r6, r7, r14 @ d += a[2]*2 * a[9]
mov r0, r0, asl #1
ldr r7, [r1, #4*4] @ a[4]*2
umull r9, r10, r0, r14 @ d' = a[3]*2 * a[9]
ldr r14, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r8 @ d += a[3]*2 * a[8]
mov r7, r7, asl #1
ldr r0, [r1, #5*4] @ a[5]*2
umlal r9, r10, r7, r8 @ d' += a[4]*2 * a[8]
ldr r8, [r1, #6*4] @ a[6]
mov r0, r0, asl #1
umlal r5, r6, r7, r14 @ d += a[4]*2 * a[7]
umlal r9, r10, r0, r14 @ d' += a[5]*2 * a[7]
umlal r5, r6, r0, r8 @ d += a[5]*2 * a[6]
umlal r9, r10, r8, r8 @ d' += a[6] * a[6]
bic r0, r5, field_not_M @ u1 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u1 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t1 = c & M
str r14, [sp, #4 + 1*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u1 * R1
umlal r3, r4, r0, r14
/* D */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u2 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u2 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t2 = c & M
str r14, [sp, #4 + 2*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u2 * R1
umlal r3, r4, r0, r14
/* E interleaved with F */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
ldr r14, [r1, #2*4] @ a[2]
mov r7, r7, asl #1
ldr r8, [r1, #3*4] @ a[3]
ldr r2, [r1, #4*4]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[3]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[4]
mov r2, r2, asl #1 @ a[4]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[3]
ldr r8, [r1, #9*4] @ a[9]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[2]
ldr r0, [r1, #5*4] @ a[5]*2
umlal r11, r12, r14, r14 @ c' += a[2] * a[2]
ldr r14, [r1, #8*4] @ a[8]
mov r0, r0, asl #1
umlal r5, r6, r2, r8 @ d += a[4]*2 * a[9]
ldr r7, [r1, #6*4] @ a[6]*2
umull r9, r10, r0, r8 @ d' = a[5]*2 * a[9]
mov r7, r7, asl #1
ldr r8, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r14 @ d += a[5]*2 * a[8]
umlal r9, r10, r7, r14 @ d' += a[6]*2 * a[8]
umlal r5, r6, r7, r8 @ d += a[6]*2 * a[7]
umlal r9, r10, r8, r8 @ d' += a[7] * a[7]
bic r0, r5, field_not_M @ u3 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u3 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t3 = c & M
str r14, [sp, #4 + 3*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u3 * R1
umlal r3, r4, r0, r14
/* F */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u4 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u4 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t4 = c & M
str r14, [sp, #4 + 4*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u4 * R1
umlal r3, r4, r0, r14
/* G interleaved with H */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
mov r7, r7, asl #1
ldr r8, [r1, #5*4] @ a[5]
ldr r2, [r1, #6*4] @ a[6]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[5]
ldr r14, [r1, #4*4] @ a[4]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[6]
ldr r7, [r1, #2*4] @ a[2]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[5]
mov r7, r7, asl #1
ldr r8, [r1, #3*4] @ a[3]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[4]
mov r0, r2, asl #1 @ a[6]*2
umlal r11, r12, r7, r14 @ c' += a[2]*2 * a[4]
ldr r14, [r1, #9*4] @ a[9]
umlal r3, r4, r7, r8 @ c += a[2]*2 * a[3]
ldr r7, [r1, #7*4] @ a[7]*2
umlal r11, r12, r8, r8 @ c' += a[3] * a[3]
mov r7, r7, asl #1
ldr r8, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r14 @ d += a[6]*2 * a[9]
umull r9, r10, r7, r14 @ d' = a[7]*2 * a[9]
umlal r5, r6, r7, r8 @ d += a[7]*2 * a[8]
umlal r9, r10, r8, r8 @ d' += a[8] * a[8]
bic r0, r5, field_not_M @ u5 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u5 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t5 = c & M
str r14, [sp, #4 + 5*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u5 * R1
umlal r3, r4, r0, r14
/* H */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u6 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u6 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t6 = c & M
str r14, [sp, #4 + 6*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u6 * R1
umlal r3, r4, r0, r14
/* I interleaved with J */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
mov r7, r7, asl #1
ldr r8, [r1, #7*4] @ a[7]
ldr r2, [r1, #8*4] @ a[8]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[7]
ldr r14, [r1, #6*4] @ a[6]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[8]
ldr r7, [r1, #2*4] @ a[2]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[7]
ldr r8, [r1, #5*4] @ a[5]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[6]
ldr r0, [r1, #3*4] @ a[3]*2
mov r7, r7, asl #1
umlal r11, r12, r7, r14 @ c' += a[2]*2 * a[6]
ldr r14, [r1, #4*4] @ a[4]
mov r0, r0, asl #1
umlal r3, r4, r7, r8 @ c += a[2]*2 * a[5]
mov r2, r2, asl #1 @ a[8]*2
umlal r11, r12, r0, r8 @ c' += a[3]*2 * a[5]
umlal r3, r4, r0, r14 @ c += a[3]*2 * a[4]
umlal r11, r12, r14, r14 @ c' += a[4] * a[4]
ldr r8, [r1, #9*4] @ a[9]
umlal r5, r6, r2, r8 @ d += a[8]*2 * a[9]
@ r8 will be used in J
bic r0, r5, field_not_M @ u7 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u7 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t7 = c & M
str r14, [sp, #4 + 7*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u7 * R1
umlal r3, r4, r0, r14
/* J */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
umlal r5, r6, r8, r8 @ d += a[9] * a[9]
bic r0, r5, field_not_M @ u8 = d & M
str r0, [sp, #4 + 8*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u8 * R0
umlal r3, r4, r0, r14
/******************************************
* compute and write back result
******************************************
Allocation:
r0 r
r3:r4 c
r5:r6 d
r7 t0
r8 t1
r9 t2
r11 u8
r12 t9
r1,r2,r10,r14 scratch
Note: do not read from a[] after here, it may overlap with r[]
*/
ldr r0, [sp, #0]
add r1, sp, #4 + 3*4 @ r[3..7] = t3..7, r11=u8, r12=t9
ldmia r1, {r2,r7,r8,r9,r10,r11,r12}
add r1, r0, #3*4
stmia r1, {r2,r7,r8,r9,r10}
bic r2, r3, field_not_M @ r[8] = c & M
str r2, [r0, #8*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u8 * R1
umlal r3, r4, r11, r14
movw r14, field_R0 @ c += d * R0
umlal r3, r4, r5, r14
adds r3, r3, r12 @ c += t9
adc r4, r4, #0
add r1, sp, #4 + 0*4 @ r7,r8,r9 = t0,t1,t2
ldmia r1, {r7,r8,r9}
ubfx r2, r3, #0, #22 @ r[9] = c & (M >> 4)
str r2, [r0, #9*4]
mov r3, r3, lsr #22 @ c >>= 22
orr r3, r3, r4, asl #10
mov r4, r4, lsr #22
movw r14, field_R1 << 4 @ c += d * (R1 << 4)
umlal r3, r4, r5, r14
movw r14, field_R0 >> 4 @ d = c * (R0 >> 4) + t0 (64x64 multiply+add)
umull r5, r6, r3, r14 @ d = c.lo * (R0 >> 4)
adds r5, r5, r7 @ d.lo += t0
mla r6, r14, r4, r6 @ d.hi += c.hi * (R0 >> 4)
adc r6, r6, 0 @ d.hi += carry
bic r2, r5, field_not_M @ r[0] = d & M
str r2, [r0, #0*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R1 >> 4 @ d += c * (R1 >> 4) + t1 (64x64 multiply+add)
umull r1, r2, r3, r14 @ tmp = c.lo * (R1 >> 4)
adds r5, r5, r8 @ d.lo += t1
adc r6, r6, #0 @ d.hi += carry
adds r5, r5, r1 @ d.lo += tmp.lo
mla r2, r14, r4, r2 @ tmp.hi += c.hi * (R1 >> 4)
adc r6, r6, r2 @ d.hi += carry + tmp.hi
bic r2, r5, field_not_M @ r[1] = d & M
str r2, [r0, #1*4]
mov r5, r5, lsr #26 @ d >>= 26 (ignore hi)
orr r5, r5, r6, asl #6
add r5, r5, r9 @ d += t2
str r5, [r0, #2*4] @ r[2] = d
add sp, sp, #48
ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}
.size secp256k1_fe_sqr_inner, .-secp256k1_fe_sqr_inner

View File

@ -0,0 +1,83 @@
/***********************************************************************
* Copyright (c) 2020 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ASSUMPTIONS_H
#define SECP256K1_ASSUMPTIONS_H
#include <limits.h>
#include "util.h"
#if defined(SECP256K1_INT128_NATIVE)
#include "int128_native.h"
#endif
/* This library, like most software, relies on a number of compiler implementation defined (but not undefined)
behaviours. Although the behaviours we require are essentially universal we test them specifically here to
reduce the odds of experiencing an unwelcome surprise.
*/
struct secp256k1_assumption_checker {
/* This uses a trick to implement a static assertion in C89: a type with an array of negative size is not
allowed. */
int dummy_array[(
/* Bytes are 8 bits. */
(CHAR_BIT == 8) &&
/* No integer promotion for uint32_t. This ensures that we can multiply uintXX_t values where XX >= 32
without signed overflow, which would be undefined behaviour. */
(UINT_MAX <= UINT32_MAX) &&
/* Conversions from unsigned to signed outside of the bounds of the signed type are
implementation-defined. Verify that they function as reinterpreting the lower
bits of the input in two's complement notation. Do this for conversions:
- from uint(N)_t to int(N)_t with negative result
- from uint(2N)_t to int(N)_t with negative result
- from int(2N)_t to int(N)_t with negative result
- from int(2N)_t to int(N)_t with positive result */
/* To int8_t. */
((int8_t)(uint8_t)0xAB == (int8_t)-(int8_t)0x55) &&
((int8_t)(uint16_t)0xABCD == (int8_t)-(int8_t)0x33) &&
((int8_t)(int16_t)(uint16_t)0xCDEF == (int8_t)(uint8_t)0xEF) &&
((int8_t)(int16_t)(uint16_t)0x9234 == (int8_t)(uint8_t)0x34) &&
/* To int16_t. */
((int16_t)(uint16_t)0xBCDE == (int16_t)-(int16_t)0x4322) &&
((int16_t)(uint32_t)0xA1B2C3D4 == (int16_t)-(int16_t)0x3C2C) &&
((int16_t)(int32_t)(uint32_t)0xC1D2E3F4 == (int16_t)(uint16_t)0xE3F4) &&
((int16_t)(int32_t)(uint32_t)0x92345678 == (int16_t)(uint16_t)0x5678) &&
/* To int32_t. */
((int32_t)(uint32_t)0xB2C3D4E5 == (int32_t)-(int32_t)0x4D3C2B1B) &&
((int32_t)(uint64_t)0xA123B456C789D012ULL == (int32_t)-(int32_t)0x38762FEE) &&
((int32_t)(int64_t)(uint64_t)0xC1D2E3F4A5B6C7D8ULL == (int32_t)(uint32_t)0xA5B6C7D8) &&
((int32_t)(int64_t)(uint64_t)0xABCDEF0123456789ULL == (int32_t)(uint32_t)0x23456789) &&
/* To int64_t. */
((int64_t)(uint64_t)0xB123C456D789E012ULL == (int64_t)-(int64_t)0x4EDC3BA928761FEEULL) &&
#if defined(SECP256K1_INT128_NATIVE)
((int64_t)(((uint128_t)0xA1234567B8901234ULL << 64) + 0xC5678901D2345678ULL) == (int64_t)-(int64_t)0x3A9876FE2DCBA988ULL) &&
(((int64_t)(int128_t)(((uint128_t)0xB1C2D3E4F5A6B7C8ULL << 64) + 0xD9E0F1A2B3C4D5E6ULL)) == (int64_t)(uint64_t)0xD9E0F1A2B3C4D5E6ULL) &&
(((int64_t)(int128_t)(((uint128_t)0xABCDEF0123456789ULL << 64) + 0x0123456789ABCDEFULL)) == (int64_t)(uint64_t)0x0123456789ABCDEFULL) &&
/* To int128_t. */
((int128_t)(((uint128_t)0xB1234567C8901234ULL << 64) + 0xD5678901E2345678ULL) == (int128_t)(-(int128_t)0x8E1648B3F50E80DCULL * 0x8E1648B3F50E80DDULL + 0x5EA688D5482F9464ULL)) &&
#endif
/* Right shift on negative signed values is implementation defined. Verify that it
acts as a right shift in two's complement with sign extension (i.e duplicating
the top bit into newly added bits). */
((((int8_t)0xE8) >> 2) == (int8_t)(uint8_t)0xFA) &&
((((int16_t)0xE9AC) >> 4) == (int16_t)(uint16_t)0xFE9A) &&
((((int32_t)0x937C918A) >> 9) == (int32_t)(uint32_t)0xFFC9BE48) &&
((((int64_t)0xA8B72231DF9CF4B9ULL) >> 19) == (int64_t)(uint64_t)0xFFFFF516E4463BF3ULL) &&
#if defined(SECP256K1_INT128_NATIVE)
((((int128_t)(((uint128_t)0xCD833A65684A0DBCULL << 64) + 0xB349312F71EA7637ULL)) >> 39) == (int128_t)(((uint128_t)0xFFFFFFFFFF9B0674ULL << 64) + 0xCAD0941B79669262ULL)) &&
#endif
1) * 2 - 1];
};
#endif /* SECP256K1_ASSUMPTIONS_H */

223
ext/secp256k1/src/bench.c Normal file
View File

@ -0,0 +1,223 @@
/***********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#include <stdio.h>
#include <string.h>
#include "../include/secp256k1.h"
#include "util.h"
#include "bench.h"
static void help(int default_iters) {
printf("Benchmarks the following algorithms:\n");
printf(" - ECDSA signing/verification\n");
#ifdef ENABLE_MODULE_ECDH
printf(" - ECDH key exchange (optional module)\n");
#endif
#ifdef ENABLE_MODULE_RECOVERY
printf(" - Public key recovery (optional module)\n");
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
printf(" - Schnorr signatures (optional module)\n");
#endif
printf("\n");
printf("The default number of iterations for each benchmark is %d. This can be\n", default_iters);
printf("customized using the SECP256K1_BENCH_ITERS environment variable.\n");
printf("\n");
printf("Usage: ./bench [args]\n");
printf("By default, all benchmarks will be run.\n");
printf("args:\n");
printf(" help : display this help and exit\n");
printf(" ecdsa : all ECDSA algorithms--sign, verify, recovery (if enabled)\n");
printf(" ecdsa_sign : ECDSA siging algorithm\n");
printf(" ecdsa_verify : ECDSA verification algorithm\n");
#ifdef ENABLE_MODULE_RECOVERY
printf(" ecdsa_recover : ECDSA public key recovery algorithm\n");
#endif
#ifdef ENABLE_MODULE_ECDH
printf(" ecdh : ECDH key exchange algorithm\n");
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
printf(" schnorrsig : all Schnorr signature algorithms (sign, verify)\n");
printf(" schnorrsig_sign : Schnorr sigining algorithm\n");
printf(" schnorrsig_verify : Schnorr verification algorithm\n");
#endif
printf("\n");
}
typedef struct {
secp256k1_context *ctx;
unsigned char msg[32];
unsigned char key[32];
unsigned char sig[72];
size_t siglen;
unsigned char pubkey[33];
size_t pubkeylen;
} bench_data;
static void bench_verify(void* arg, int iters) {
int i;
bench_data* data = (bench_data*)arg;
for (i = 0; i < iters; i++) {
secp256k1_pubkey pubkey;
secp256k1_ecdsa_signature sig;
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->pubkey, data->pubkeylen) == 1);
CHECK(secp256k1_ecdsa_signature_parse_der(data->ctx, &sig, data->sig, data->siglen) == 1);
CHECK(secp256k1_ecdsa_verify(data->ctx, &sig, data->msg, &pubkey) == (i == 0));
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
}
}
static void bench_sign_setup(void* arg) {
int i;
bench_data *data = (bench_data*)arg;
for (i = 0; i < 32; i++) {
data->msg[i] = i + 1;
}
for (i = 0; i < 32; i++) {
data->key[i] = i + 65;
}
}
static void bench_sign_run(void* arg, int iters) {
int i;
bench_data *data = (bench_data*)arg;
unsigned char sig[74];
for (i = 0; i < iters; i++) {
size_t siglen = 74;
int j;
secp256k1_ecdsa_signature signature;
CHECK(secp256k1_ecdsa_sign(data->ctx, &signature, data->msg, data->key, NULL, NULL));
CHECK(secp256k1_ecdsa_signature_serialize_der(data->ctx, sig, &siglen, &signature));
for (j = 0; j < 32; j++) {
data->msg[j] = sig[j];
data->key[j] = sig[j + 32];
}
}
}
#ifdef ENABLE_MODULE_ECDH
# include "modules/ecdh/bench_impl.h"
#endif
#ifdef ENABLE_MODULE_RECOVERY
# include "modules/recovery/bench_impl.h"
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
# include "modules/schnorrsig/bench_impl.h"
#endif
int main(int argc, char** argv) {
int i;
secp256k1_pubkey pubkey;
secp256k1_ecdsa_signature sig;
bench_data data;
int d = argc == 1;
int default_iters = 20000;
int iters = get_iters(default_iters);
/* Check for invalid user arguments */
char* valid_args[] = {"ecdsa", "verify", "ecdsa_verify", "sign", "ecdsa_sign", "ecdh", "recover",
"ecdsa_recover", "schnorrsig", "schnorrsig_verify", "schnorrsig_sign"};
size_t valid_args_size = sizeof(valid_args)/sizeof(valid_args[0]);
int invalid_args = have_invalid_args(argc, argv, valid_args, valid_args_size);
if (argc > 1) {
if (have_flag(argc, argv, "-h")
|| have_flag(argc, argv, "--help")
|| have_flag(argc, argv, "help")) {
help(default_iters);
return 0;
} else if (invalid_args) {
fprintf(stderr, "./bench: unrecognized argument.\n\n");
help(default_iters);
return 1;
}
}
/* Check if the user tries to benchmark optional module without building it */
#ifndef ENABLE_MODULE_ECDH
if (have_flag(argc, argv, "ecdh")) {
fprintf(stderr, "./bench: ECDH module not enabled.\n");
fprintf(stderr, "Use ./configure --enable-module-ecdh.\n\n");
return 1;
}
#endif
#ifndef ENABLE_MODULE_RECOVERY
if (have_flag(argc, argv, "recover") || have_flag(argc, argv, "ecdsa_recover")) {
fprintf(stderr, "./bench: Public key recovery module not enabled.\n");
fprintf(stderr, "Use ./configure --enable-module-recovery.\n\n");
return 1;
}
#endif
#ifndef ENABLE_MODULE_SCHNORRSIG
if (have_flag(argc, argv, "schnorrsig") || have_flag(argc, argv, "schnorrsig_sign") || have_flag(argc, argv, "schnorrsig_verify")) {
fprintf(stderr, "./bench: Schnorr signatures module not enabled.\n");
fprintf(stderr, "Use ./configure --enable-module-schnorrsig.\n\n");
return 1;
}
#endif
/* ECDSA benchmark */
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
for (i = 0; i < 32; i++) {
data.msg[i] = 1 + i;
}
for (i = 0; i < 32; i++) {
data.key[i] = 33 + i;
}
data.siglen = 72;
CHECK(secp256k1_ecdsa_sign(data.ctx, &sig, data.msg, data.key, NULL, NULL));
CHECK(secp256k1_ecdsa_signature_serialize_der(data.ctx, data.sig, &data.siglen, &sig));
CHECK(secp256k1_ec_pubkey_create(data.ctx, &pubkey, data.key));
data.pubkeylen = 33;
CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
print_output_table_header_row();
if (d || have_flag(argc, argv, "ecdsa") || have_flag(argc, argv, "verify") || have_flag(argc, argv, "ecdsa_verify")) run_benchmark("ecdsa_verify", bench_verify, NULL, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "ecdsa") || have_flag(argc, argv, "sign") || have_flag(argc, argv, "ecdsa_sign")) run_benchmark("ecdsa_sign", bench_sign_run, bench_sign_setup, NULL, &data, 10, iters);
secp256k1_context_destroy(data.ctx);
#ifdef ENABLE_MODULE_ECDH
/* ECDH benchmarks */
run_ecdh_bench(iters, argc, argv);
#endif
#ifdef ENABLE_MODULE_RECOVERY
/* ECDSA recovery benchmarks */
run_recovery_bench(iters, argc, argv);
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
/* Schnorr signature benchmarks */
run_schnorrsig_bench(iters, argc, argv);
#endif
return 0;
}

188
ext/secp256k1/src/bench.h Normal file
View File

@ -0,0 +1,188 @@
/***********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_BENCH_H
#define SECP256K1_BENCH_H
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#if (defined(_MSC_VER) && _MSC_VER >= 1900)
# include <time.h>
#else
# include <sys/time.h>
#endif
static int64_t gettime_i64(void) {
#if (defined(_MSC_VER) && _MSC_VER >= 1900)
/* C11 way to get wallclock time */
struct timespec tv;
if (!timespec_get(&tv, TIME_UTC)) {
fputs("timespec_get failed!", stderr);
exit(1);
}
return (int64_t)tv.tv_nsec / 1000 + (int64_t)tv.tv_sec * 1000000LL;
#else
struct timeval tv;
gettimeofday(&tv, NULL);
return (int64_t)tv.tv_usec + (int64_t)tv.tv_sec * 1000000LL;
#endif
}
#define FP_EXP (6)
#define FP_MULT (1000000LL)
/* Format fixed point number. */
static void print_number(const int64_t x) {
int64_t x_abs, y;
int c, i, rounding, g; /* g = integer part size, c = fractional part size */
size_t ptr;
char buffer[30];
if (x == INT64_MIN) {
/* Prevent UB. */
printf("ERR");
return;
}
x_abs = x < 0 ? -x : x;
/* Determine how many decimals we want to show (more than FP_EXP makes no
* sense). */
y = x_abs;
c = 0;
while (y > 0LL && y < 100LL * FP_MULT && c < FP_EXP) {
y *= 10LL;
c++;
}
/* Round to 'c' decimals. */
y = x_abs;
rounding = 0;
for (i = c; i < FP_EXP; ++i) {
rounding = (y % 10) >= 5;
y /= 10;
}
y += rounding;
/* Format and print the number. */
ptr = sizeof(buffer) - 1;
buffer[ptr] = 0;
g = 0;
if (c != 0) { /* non zero fractional part */
for (i = 0; i < c; ++i) {
buffer[--ptr] = '0' + (y % 10);
y /= 10;
}
} else if (c == 0) { /* fractional part is 0 */
buffer[--ptr] = '0';
}
buffer[--ptr] = '.';
do {
buffer[--ptr] = '0' + (y % 10);
y /= 10;
g++;
} while (y != 0);
if (x < 0) {
buffer[--ptr] = '-';
g++;
}
printf("%5.*s", g, &buffer[ptr]); /* Prints integer part */
printf("%-*s", FP_EXP, &buffer[ptr + g]); /* Prints fractional part */
}
static void run_benchmark(char *name, void (*benchmark)(void*, int), void (*setup)(void*), void (*teardown)(void*, int), void* data, int count, int iter) {
int i;
int64_t min = INT64_MAX;
int64_t sum = 0;
int64_t max = 0;
for (i = 0; i < count; i++) {
int64_t begin, total;
if (setup != NULL) {
setup(data);
}
begin = gettime_i64();
benchmark(data, iter);
total = gettime_i64() - begin;
if (teardown != NULL) {
teardown(data, iter);
}
if (total < min) {
min = total;
}
if (total > max) {
max = total;
}
sum += total;
}
/* ',' is used as a column delimiter */
printf("%-30s, ", name);
print_number(min * FP_MULT / iter);
printf(" , ");
print_number(((sum * FP_MULT) / count) / iter);
printf(" , ");
print_number(max * FP_MULT / iter);
printf("\n");
}
static int have_flag(int argc, char** argv, char *flag) {
char** argm = argv + argc;
argv++;
while (argv != argm) {
if (strcmp(*argv, flag) == 0) {
return 1;
}
argv++;
}
return 0;
}
/* takes an array containing the arguments that the user is allowed to enter on the command-line
returns:
- 1 if the user entered an invalid argument
- 0 if all the user entered arguments are valid */
static int have_invalid_args(int argc, char** argv, char** valid_args, size_t n) {
size_t i;
int found_valid;
char** argm = argv + argc;
argv++;
while (argv != argm) {
found_valid = 0;
for (i = 0; i < n; i++) {
if (strcmp(*argv, valid_args[i]) == 0) {
found_valid = 1; /* user entered a valid arg from the list */
break;
}
}
if (found_valid == 0) {
return 1; /* invalid arg found */
}
argv++;
}
return 0;
}
static int get_iters(int default_iters) {
char* env = getenv("SECP256K1_BENCH_ITERS");
if (env) {
return strtol(env, NULL, 0);
} else {
return default_iters;
}
}
static void print_output_table_header_row(void) {
char* bench_str = "Benchmark"; /* left justified */
char* min_str = " Min(us) "; /* center alignment */
char* avg_str = " Avg(us) ";
char* max_str = " Max(us) ";
printf("%-30s,%-15s,%-15s,%-15s\n", bench_str, min_str, avg_str, max_str);
printf("\n");
}
#endif /* SECP256K1_BENCH_H */

View File

@ -0,0 +1,370 @@
/***********************************************************************
* Copyright (c) 2017 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#include <stdio.h>
#include "secp256k1.c"
#include "../include/secp256k1.h"
#include "util.h"
#include "hash_impl.h"
#include "field_impl.h"
#include "group_impl.h"
#include "scalar_impl.h"
#include "ecmult_impl.h"
#include "bench.h"
#define POINTS 32768
static void help(char **argv) {
printf("Benchmark EC multiplication algorithms\n");
printf("\n");
printf("Usage: %s <help|pippenger_wnaf|strauss_wnaf|simple>\n", argv[0]);
printf("The output shows the number of multiplied and summed points right after the\n");
printf("function name. The letter 'g' indicates that one of the points is the generator.\n");
printf("The benchmarks are divided by the number of points.\n");
printf("\n");
printf("default (ecmult_multi): picks pippenger_wnaf or strauss_wnaf depending on the\n");
printf(" batch size\n");
printf("pippenger_wnaf: for all batch sizes\n");
printf("strauss_wnaf: for all batch sizes\n");
printf("simple: multiply and sum each point individually\n");
}
typedef struct {
/* Setup once in advance */
secp256k1_context* ctx;
secp256k1_scratch_space* scratch;
secp256k1_scalar* scalars;
secp256k1_ge* pubkeys;
secp256k1_gej* pubkeys_gej;
secp256k1_scalar* seckeys;
secp256k1_gej* expected_output;
secp256k1_ecmult_multi_func ecmult_multi;
/* Changes per benchmark */
size_t count;
int includes_g;
/* Changes per benchmark iteration, used to pick different scalars and pubkeys
* in each run. */
size_t offset1;
size_t offset2;
/* Benchmark output. */
secp256k1_gej* output;
} bench_data;
/* Hashes x into [0, POINTS) twice and store the result in offset1 and offset2. */
static void hash_into_offset(bench_data* data, size_t x) {
data->offset1 = (x * 0x537b7f6f + 0x8f66a481) % POINTS;
data->offset2 = (x * 0x7f6f537b + 0x6a1a8f49) % POINTS;
}
/* Check correctness of the benchmark by computing
* sum(outputs) ?= (sum(scalars_gen) + sum(seckeys)*sum(scalars))*G */
static void bench_ecmult_teardown_helper(bench_data* data, size_t* seckey_offset, size_t* scalar_offset, size_t* scalar_gen_offset, int iters) {
int i;
secp256k1_gej sum_output, tmp;
secp256k1_scalar sum_scalars;
secp256k1_gej_set_infinity(&sum_output);
secp256k1_scalar_clear(&sum_scalars);
for (i = 0; i < iters; ++i) {
secp256k1_gej_add_var(&sum_output, &sum_output, &data->output[i], NULL);
if (scalar_gen_offset != NULL) {
secp256k1_scalar_add(&sum_scalars, &sum_scalars, &data->scalars[(*scalar_gen_offset+i) % POINTS]);
}
if (seckey_offset != NULL) {
secp256k1_scalar s = data->seckeys[(*seckey_offset+i) % POINTS];
secp256k1_scalar_mul(&s, &s, &data->scalars[(*scalar_offset+i) % POINTS]);
secp256k1_scalar_add(&sum_scalars, &sum_scalars, &s);
}
}
secp256k1_ecmult_gen(&data->ctx->ecmult_gen_ctx, &tmp, &sum_scalars);
CHECK(secp256k1_gej_eq_var(&tmp, &sum_output));
}
static void bench_ecmult_setup(void* arg) {
bench_data* data = (bench_data*)arg;
/* Re-randomize offset to ensure that we're using different scalars and
* group elements in each run. */
hash_into_offset(data, data->offset1);
}
static void bench_ecmult_gen(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int i;
for (i = 0; i < iters; ++i) {
secp256k1_ecmult_gen(&data->ctx->ecmult_gen_ctx, &data->output[i], &data->scalars[(data->offset1+i) % POINTS]);
}
}
static void bench_ecmult_gen_teardown(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
bench_ecmult_teardown_helper(data, NULL, NULL, &data->offset1, iters);
}
static void bench_ecmult_const(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int i;
for (i = 0; i < iters; ++i) {
secp256k1_ecmult_const(&data->output[i], &data->pubkeys[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS]);
}
}
static void bench_ecmult_const_teardown(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
bench_ecmult_teardown_helper(data, &data->offset1, &data->offset2, NULL, iters);
}
static void bench_ecmult_1p(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int i;
for (i = 0; i < iters; ++i) {
secp256k1_ecmult(&data->output[i], &data->pubkeys_gej[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS], NULL);
}
}
static void bench_ecmult_1p_teardown(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
bench_ecmult_teardown_helper(data, &data->offset1, &data->offset2, NULL, iters);
}
static void bench_ecmult_0p_g(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
secp256k1_scalar zero;
int i;
secp256k1_scalar_set_int(&zero, 0);
for (i = 0; i < iters; ++i) {
secp256k1_ecmult(&data->output[i], NULL, &zero, &data->scalars[(data->offset1+i) % POINTS]);
}
}
static void bench_ecmult_0p_g_teardown(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
bench_ecmult_teardown_helper(data, NULL, NULL, &data->offset1, iters);
}
static void bench_ecmult_1p_g(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int i;
for (i = 0; i < iters/2; ++i) {
secp256k1_ecmult(&data->output[i], &data->pubkeys_gej[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS], &data->scalars[(data->offset1+i) % POINTS]);
}
}
static void bench_ecmult_1p_g_teardown(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
bench_ecmult_teardown_helper(data, &data->offset1, &data->offset2, &data->offset1, iters/2);
}
static void run_ecmult_bench(bench_data* data, int iters) {
char str[32];
sprintf(str, "ecmult_gen");
run_benchmark(str, bench_ecmult_gen, bench_ecmult_setup, bench_ecmult_gen_teardown, data, 10, iters);
sprintf(str, "ecmult_const");
run_benchmark(str, bench_ecmult_const, bench_ecmult_setup, bench_ecmult_const_teardown, data, 10, iters);
/* ecmult with non generator point */
sprintf(str, "ecmult_1p");
run_benchmark(str, bench_ecmult_1p, bench_ecmult_setup, bench_ecmult_1p_teardown, data, 10, iters);
/* ecmult with generator point */
sprintf(str, "ecmult_0p_g");
run_benchmark(str, bench_ecmult_0p_g, bench_ecmult_setup, bench_ecmult_0p_g_teardown, data, 10, iters);
/* ecmult with generator and non-generator point. The reported time is per point. */
sprintf(str, "ecmult_1p_g");
run_benchmark(str, bench_ecmult_1p_g, bench_ecmult_setup, bench_ecmult_1p_g_teardown, data, 10, 2*iters);
}
static int bench_ecmult_multi_callback(secp256k1_scalar* sc, secp256k1_ge* ge, size_t idx, void* arg) {
bench_data* data = (bench_data*)arg;
if (data->includes_g) ++idx;
if (idx == 0) {
*sc = data->scalars[data->offset1];
*ge = secp256k1_ge_const_g;
} else {
*sc = data->scalars[(data->offset1 + idx) % POINTS];
*ge = data->pubkeys[(data->offset2 + idx - 1) % POINTS];
}
return 1;
}
static void bench_ecmult_multi(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int includes_g = data->includes_g;
int iter;
int count = data->count;
iters = iters / data->count;
for (iter = 0; iter < iters; ++iter) {
data->ecmult_multi(&data->ctx->error_callback, data->scratch, &data->output[iter], data->includes_g ? &data->scalars[data->offset1] : NULL, bench_ecmult_multi_callback, arg, count - includes_g);
data->offset1 = (data->offset1 + count) % POINTS;
data->offset2 = (data->offset2 + count - 1) % POINTS;
}
}
static void bench_ecmult_multi_setup(void* arg) {
bench_data* data = (bench_data*)arg;
hash_into_offset(data, data->count);
}
static void bench_ecmult_multi_teardown(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
int iter;
iters = iters / data->count;
/* Verify the results in teardown, to avoid doing comparisons while benchmarking. */
for (iter = 0; iter < iters; ++iter) {
secp256k1_gej tmp;
secp256k1_gej_add_var(&tmp, &data->output[iter], &data->expected_output[iter], NULL);
CHECK(secp256k1_gej_is_infinity(&tmp));
}
}
static void generate_scalar(uint32_t num, secp256k1_scalar* scalar) {
secp256k1_sha256 sha256;
unsigned char c[10] = {'e', 'c', 'm', 'u', 'l', 't', 0, 0, 0, 0};
unsigned char buf[32];
int overflow = 0;
c[6] = num;
c[7] = num >> 8;
c[8] = num >> 16;
c[9] = num >> 24;
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, c, sizeof(c));
secp256k1_sha256_finalize(&sha256, buf);
secp256k1_scalar_set_b32(scalar, buf, &overflow);
CHECK(!overflow);
}
static void run_ecmult_multi_bench(bench_data* data, size_t count, int includes_g, int num_iters) {
char str[32];
static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
size_t iters = 1 + num_iters / count;
size_t iter;
data->count = count;
data->includes_g = includes_g;
/* Compute (the negation of) the expected results directly. */
hash_into_offset(data, data->count);
for (iter = 0; iter < iters; ++iter) {
secp256k1_scalar tmp;
secp256k1_scalar total = data->scalars[(data->offset1++) % POINTS];
size_t i = 0;
for (i = 0; i + 1 < count; ++i) {
secp256k1_scalar_mul(&tmp, &data->seckeys[(data->offset2++) % POINTS], &data->scalars[(data->offset1++) % POINTS]);
secp256k1_scalar_add(&total, &total, &tmp);
}
secp256k1_scalar_negate(&total, &total);
secp256k1_ecmult(&data->expected_output[iter], NULL, &zero, &total);
}
/* Run the benchmark. */
if (includes_g) {
sprintf(str, "ecmult_multi_%ip_g", (int)count - 1);
} else {
sprintf(str, "ecmult_multi_%ip", (int)count);
}
run_benchmark(str, bench_ecmult_multi, bench_ecmult_multi_setup, bench_ecmult_multi_teardown, data, 10, count * iters);
}
int main(int argc, char **argv) {
bench_data data;
int i, p;
size_t scratch_size;
int iters = get_iters(10000);
data.ecmult_multi = secp256k1_ecmult_multi_var;
if (argc > 1) {
if(have_flag(argc, argv, "-h")
|| have_flag(argc, argv, "--help")
|| have_flag(argc, argv, "help")) {
help(argv);
return 0;
} else if(have_flag(argc, argv, "pippenger_wnaf")) {
printf("Using pippenger_wnaf:\n");
data.ecmult_multi = secp256k1_ecmult_pippenger_batch_single;
} else if(have_flag(argc, argv, "strauss_wnaf")) {
printf("Using strauss_wnaf:\n");
data.ecmult_multi = secp256k1_ecmult_strauss_batch_single;
} else if(have_flag(argc, argv, "simple")) {
printf("Using simple algorithm:\n");
} else {
fprintf(stderr, "%s: unrecognized argument '%s'.\n\n", argv[0], argv[1]);
help(argv);
return 1;
}
}
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
scratch_size = secp256k1_strauss_scratch_size(POINTS) + STRAUSS_SCRATCH_OBJECTS*16;
if (!have_flag(argc, argv, "simple")) {
data.scratch = secp256k1_scratch_space_create(data.ctx, scratch_size);
} else {
data.scratch = NULL;
}
/* Allocate stuff */
data.scalars = malloc(sizeof(secp256k1_scalar) * POINTS);
data.seckeys = malloc(sizeof(secp256k1_scalar) * POINTS);
data.pubkeys = malloc(sizeof(secp256k1_ge) * POINTS);
data.pubkeys_gej = malloc(sizeof(secp256k1_gej) * POINTS);
data.expected_output = malloc(sizeof(secp256k1_gej) * (iters + 1));
data.output = malloc(sizeof(secp256k1_gej) * (iters + 1));
/* Generate a set of scalars, and private/public keypairs. */
secp256k1_gej_set_ge(&data.pubkeys_gej[0], &secp256k1_ge_const_g);
secp256k1_scalar_set_int(&data.seckeys[0], 1);
for (i = 0; i < POINTS; ++i) {
generate_scalar(i, &data.scalars[i]);
if (i) {
secp256k1_gej_double_var(&data.pubkeys_gej[i], &data.pubkeys_gej[i - 1], NULL);
secp256k1_scalar_add(&data.seckeys[i], &data.seckeys[i - 1], &data.seckeys[i - 1]);
}
}
secp256k1_ge_set_all_gej_var(data.pubkeys, data.pubkeys_gej, POINTS);
print_output_table_header_row();
/* Initialize offset1 and offset2 */
hash_into_offset(&data, 0);
run_ecmult_bench(&data, iters);
for (i = 1; i <= 8; ++i) {
run_ecmult_multi_bench(&data, i, 1, iters);
}
/* This is disabled with low count of iterations because the loop runs 77 times even with iters=1
* and the higher it goes the longer the computation takes(more points)
* So we don't run this benchmark with low iterations to prevent slow down */
if (iters > 2) {
for (p = 0; p <= 11; ++p) {
for (i = 9; i <= 16; ++i) {
run_ecmult_multi_bench(&data, i << p, 1, iters);
}
}
}
if (data.scratch != NULL) {
secp256k1_scratch_space_destroy(data.ctx, data.scratch);
}
secp256k1_context_destroy(data.ctx);
free(data.scalars);
free(data.pubkeys);
free(data.pubkeys_gej);
free(data.seckeys);
free(data.output);
free(data.expected_output);
return(0);
}

View File

@ -0,0 +1,407 @@
/***********************************************************************
* Copyright (c) 2014-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#include <stdio.h>
#include "secp256k1.c"
#include "../include/secp256k1.h"
#include "assumptions.h"
#include "util.h"
#include "hash_impl.h"
#include "field_impl.h"
#include "group_impl.h"
#include "scalar_impl.h"
#include "ecmult_const_impl.h"
#include "ecmult_impl.h"
#include "bench.h"
typedef struct {
secp256k1_scalar scalar[2];
secp256k1_fe fe[4];
secp256k1_ge ge[2];
secp256k1_gej gej[2];
unsigned char data[64];
int wnaf[256];
} bench_inv;
static void bench_setup(void* arg) {
bench_inv *data = (bench_inv*)arg;
static const unsigned char init[4][32] = {
/* Initializer for scalar[0], fe[0], first half of data, the X coordinate of ge[0],
and the (implied affine) X coordinate of gej[0]. */
{
0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
},
/* Initializer for scalar[1], fe[1], first half of data, the X coordinate of ge[1],
and the (implied affine) X coordinate of gej[1]. */
{
0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
},
/* Initializer for fe[2] and the Z coordinate of gej[0]. */
{
0x3d, 0x2d, 0xef, 0xf4, 0x25, 0x98, 0x4f, 0x5d,
0xe2, 0xca, 0x5f, 0x41, 0x3f, 0x3f, 0xce, 0x44,
0xaa, 0x2c, 0x53, 0x8a, 0xc6, 0x59, 0x1f, 0x38,
0x38, 0x23, 0xe4, 0x11, 0x27, 0xc6, 0xa0, 0xe7
},
/* Initializer for fe[3] and the Z coordinate of gej[1]. */
{
0xbd, 0x21, 0xa5, 0xe1, 0x13, 0x50, 0x73, 0x2e,
0x52, 0x98, 0xc8, 0x9e, 0xab, 0x00, 0xa2, 0x68,
0x43, 0xf5, 0xd7, 0x49, 0x80, 0x72, 0xa7, 0xf3,
0xd7, 0x60, 0xe6, 0xab, 0x90, 0x92, 0xdf, 0xc5
}
};
secp256k1_scalar_set_b32(&data->scalar[0], init[0], NULL);
secp256k1_scalar_set_b32(&data->scalar[1], init[1], NULL);
secp256k1_fe_set_b32_limit(&data->fe[0], init[0]);
secp256k1_fe_set_b32_limit(&data->fe[1], init[1]);
secp256k1_fe_set_b32_limit(&data->fe[2], init[2]);
secp256k1_fe_set_b32_limit(&data->fe[3], init[3]);
CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0));
CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1));
secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]);
secp256k1_gej_rescale(&data->gej[0], &data->fe[2]);
secp256k1_gej_set_ge(&data->gej[1], &data->ge[1]);
secp256k1_gej_rescale(&data->gej[1], &data->fe[3]);
memcpy(data->data, init[0], 32);
memcpy(data->data + 32, init[1], 32);
}
static void bench_scalar_add(void* arg, int iters) {
int i, j = 0;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(j <= iters);
}
static void bench_scalar_negate(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_scalar_negate(&data->scalar[0], &data->scalar[0]);
}
}
static void bench_scalar_mul(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_scalar_mul(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
}
static void bench_scalar_split(void* arg, int iters) {
int i, j = 0;
bench_inv *data = (bench_inv*)arg;
secp256k1_scalar tmp;
for (i = 0; i < iters; i++) {
secp256k1_scalar_split_lambda(&tmp, &data->scalar[1], &data->scalar[0]);
j += secp256k1_scalar_add(&data->scalar[0], &tmp, &data->scalar[1]);
}
CHECK(j <= iters);
}
static void bench_scalar_inverse(void* arg, int iters) {
int i, j = 0;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_scalar_inverse(&data->scalar[0], &data->scalar[0]);
j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(j <= iters);
}
static void bench_scalar_inverse_var(void* arg, int iters) {
int i, j = 0;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_scalar_inverse_var(&data->scalar[0], &data->scalar[0]);
j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(j <= iters);
}
static void bench_field_half(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_half(&data->fe[0]);
}
}
static void bench_field_normalize(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_normalize(&data->fe[0]);
}
}
static void bench_field_normalize_weak(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_normalize_weak(&data->fe[0]);
}
}
static void bench_field_mul(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_mul(&data->fe[0], &data->fe[0], &data->fe[1]);
}
}
static void bench_field_sqr(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_sqr(&data->fe[0], &data->fe[0]);
}
}
static void bench_field_inverse(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_inv(&data->fe[0], &data->fe[0]);
secp256k1_fe_add(&data->fe[0], &data->fe[1]);
}
}
static void bench_field_inverse_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_fe_inv_var(&data->fe[0], &data->fe[0]);
secp256k1_fe_add(&data->fe[0], &data->fe[1]);
}
}
static void bench_field_sqrt(void* arg, int iters) {
int i, j = 0;
bench_inv *data = (bench_inv*)arg;
secp256k1_fe t;
for (i = 0; i < iters; i++) {
t = data->fe[0];
j += secp256k1_fe_sqrt(&data->fe[0], &t);
secp256k1_fe_add(&data->fe[0], &data->fe[1]);
}
CHECK(j <= iters);
}
static void bench_field_is_square_var(void* arg, int iters) {
int i, j = 0;
bench_inv *data = (bench_inv*)arg;
secp256k1_fe t = data->fe[0];
for (i = 0; i < iters; i++) {
j += secp256k1_fe_is_square_var(&t);
secp256k1_fe_add(&t, &data->fe[1]);
secp256k1_fe_normalize_var(&t);
}
CHECK(j <= iters);
}
static void bench_group_double_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_gej_double_var(&data->gej[0], &data->gej[0], NULL);
}
}
static void bench_group_add_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_gej_add_var(&data->gej[0], &data->gej[0], &data->gej[1], NULL);
}
}
static void bench_group_add_affine(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_gej_add_ge(&data->gej[0], &data->gej[0], &data->ge[1]);
}
}
static void bench_group_add_affine_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_gej_add_ge_var(&data->gej[0], &data->gej[0], &data->ge[1], NULL);
}
}
static void bench_group_add_zinv_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
secp256k1_gej_add_zinv_var(&data->gej[0], &data->gej[0], &data->ge[1], &data->gej[0].y);
}
}
static void bench_group_to_affine_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; ++i) {
secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]);
/* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates.
Note that the resulting coordinates will generally not correspond to a point
on the curve, but this is not a problem for the code being benchmarked here.
Adding and normalizing have less overhead than EC operations (which could
guarantee the point remains on the curve). */
secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y);
secp256k1_fe_add(&data->gej[0].y, &data->fe[2]);
secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x);
secp256k1_fe_normalize_var(&data->gej[0].x);
secp256k1_fe_normalize_var(&data->gej[0].y);
secp256k1_fe_normalize_var(&data->gej[0].z);
}
}
static void bench_ecmult_wnaf(void* arg, int iters) {
int i, bits = 0, overflow = 0;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
bits += secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar[0], WINDOW_A);
overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(overflow >= 0);
CHECK(bits <= 256*iters);
}
static void bench_wnaf_const(void* arg, int iters) {
int i, bits = 0, overflow = 0;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
bits += secp256k1_wnaf_const(data->wnaf, &data->scalar[0], WINDOW_A, 256);
overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(overflow >= 0);
CHECK(bits <= 256*iters);
}
static void bench_sha256(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
secp256k1_sha256 sha;
for (i = 0; i < iters; i++) {
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, data->data, 32);
secp256k1_sha256_finalize(&sha, data->data);
}
}
static void bench_hmac_sha256(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
secp256k1_hmac_sha256 hmac;
for (i = 0; i < iters; i++) {
secp256k1_hmac_sha256_initialize(&hmac, data->data, 32);
secp256k1_hmac_sha256_write(&hmac, data->data, 32);
secp256k1_hmac_sha256_finalize(&hmac, data->data);
}
}
static void bench_rfc6979_hmac_sha256(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
secp256k1_rfc6979_hmac_sha256 rng;
for (i = 0; i < iters; i++) {
secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64);
secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32);
}
}
static void bench_context(void* arg, int iters) {
int i;
(void)arg;
for (i = 0; i < iters; i++) {
secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_NONE));
}
}
int main(int argc, char **argv) {
bench_inv data;
int iters = get_iters(20000);
int d = argc == 1; /* default */
print_output_table_header_row();
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "half")) run_benchmark("field_half", bench_field_half, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "issquare")) run_benchmark("field_is_square_var", bench_field_is_square_var, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_zinv_var", bench_group_add_zinv_var, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "context")) run_benchmark("context_create", bench_context, bench_setup, NULL, &data, 10, iters);
return 0;
}

View File

@ -0,0 +1,88 @@
/***********************************************************************
* Copyright (c) 2022 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
/* The code here is inspired by Kris Kwiatkowski's approach in
* https://github.com/kriskwiatkowski/pqc/blob/main/src/common/ct_check.h
* to provide a general interface for memory-checking mechanisms, primarily
* for constant-time checking.
*/
/* These macros are defined by this header file:
*
* - SECP256K1_CHECKMEM_ENABLED:
* - 1 if memory-checking integration is available, 0 otherwise.
* This is just a compile-time macro. Use the next macro to check it is actually
* available at runtime.
* - SECP256K1_CHECKMEM_RUNNING():
* - Acts like a function call, returning 1 if memory checking is available
* at runtime.
* - SECP256K1_CHECKMEM_CHECK(p, len):
* - Assert or otherwise fail in case the len-byte memory block pointed to by p is
* not considered entirely defined.
* - SECP256K1_CHECKMEM_CHECK_VERIFY(p, len):
* - Like SECP256K1_CHECKMEM_CHECK, but only works in VERIFY mode.
* - SECP256K1_CHECKMEM_UNDEFINE(p, len):
* - marks the len-byte memory block pointed to by p as undefined data (secret data,
* in the context of constant-time checking).
* - SECP256K1_CHECKMEM_DEFINE(p, len):
* - marks the len-byte memory pointed to by p as defined data (public data, in the
* context of constant-time checking).
*
*/
#ifndef SECP256K1_CHECKMEM_H
#define SECP256K1_CHECKMEM_H
/* Define a statement-like macro that ignores the arguments. */
#define SECP256K1_CHECKMEM_NOOP(p, len) do { (void)(p); (void)(len); } while(0)
/* If compiling under msan, map the SECP256K1_CHECKMEM_* functionality to msan.
* Choose this preferentially, even when VALGRIND is defined, as msan-compiled
* binaries can't be run under valgrind anyway. */
#if defined(__has_feature)
# if __has_feature(memory_sanitizer)
# include <sanitizer/msan_interface.h>
# define SECP256K1_CHECKMEM_ENABLED 1
# define SECP256K1_CHECKMEM_UNDEFINE(p, len) __msan_allocated_memory((p), (len))
# define SECP256K1_CHECKMEM_DEFINE(p, len) __msan_unpoison((p), (len))
# define SECP256K1_CHECKMEM_CHECK(p, len) __msan_check_mem_is_initialized((p), (len))
# define SECP256K1_CHECKMEM_RUNNING() (1)
# endif
#endif
/* If valgrind integration is desired (through the VALGRIND define), implement the
* SECP256K1_CHECKMEM_* macros using valgrind. */
#if !defined SECP256K1_CHECKMEM_ENABLED
# if defined VALGRIND
# include <stddef.h>
# include <valgrind/memcheck.h>
# define SECP256K1_CHECKMEM_ENABLED 1
# define SECP256K1_CHECKMEM_UNDEFINE(p, len) VALGRIND_MAKE_MEM_UNDEFINED((p), (len))
# define SECP256K1_CHECKMEM_DEFINE(p, len) VALGRIND_MAKE_MEM_DEFINED((p), (len))
# define SECP256K1_CHECKMEM_CHECK(p, len) VALGRIND_CHECK_MEM_IS_DEFINED((p), (len))
/* VALGRIND_MAKE_MEM_DEFINED returns 0 iff not running on memcheck.
* This is more precise than the RUNNING_ON_VALGRIND macro, which
* checks for valgrind in general instead of memcheck specifically. */
# define SECP256K1_CHECKMEM_RUNNING() (VALGRIND_MAKE_MEM_DEFINED(NULL, 0) != 0)
# endif
#endif
/* As a fall-back, map these macros to dummy statements. */
#if !defined SECP256K1_CHECKMEM_ENABLED
# define SECP256K1_CHECKMEM_ENABLED 0
# define SECP256K1_CHECKMEM_UNDEFINE(p, len) SECP256K1_CHECKMEM_NOOP((p), (len))
# define SECP256K1_CHECKMEM_DEFINE(p, len) SECP256K1_CHECKMEM_NOOP((p), (len))
# define SECP256K1_CHECKMEM_CHECK(p, len) SECP256K1_CHECKMEM_NOOP((p), (len))
# define SECP256K1_CHECKMEM_RUNNING() (0)
#endif
#if defined VERIFY
#define SECP256K1_CHECKMEM_CHECK_VERIFY(p, len) SECP256K1_CHECKMEM_CHECK((p), (len))
#else
#define SECP256K1_CHECKMEM_CHECK_VERIFY(p, len) SECP256K1_CHECKMEM_NOOP((p), (len))
#endif
#endif /* SECP256K1_CHECKMEM_H */

View File

@ -0,0 +1,174 @@
/***********************************************************************
* Copyright (c) 2020 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#include <stdio.h>
#include "../include/secp256k1.h"
#include "assumptions.h"
#include "checkmem.h"
#if !SECP256K1_CHECKMEM_ENABLED
# error "This tool cannot be compiled without memory-checking interface (valgrind or msan)"
#endif
#ifdef ENABLE_MODULE_ECDH
# include "../include/secp256k1_ecdh.h"
#endif
#ifdef ENABLE_MODULE_RECOVERY
# include "../include/secp256k1_recovery.h"
#endif
#ifdef ENABLE_MODULE_EXTRAKEYS
# include "../include/secp256k1_extrakeys.h"
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
#include "../include/secp256k1_schnorrsig.h"
#endif
static void run_tests(secp256k1_context *ctx, unsigned char *key);
int main(void) {
secp256k1_context* ctx;
unsigned char key[32];
int ret, i;
if (!SECP256K1_CHECKMEM_RUNNING()) {
fprintf(stderr, "This test can only usefully be run inside valgrind because it was not compiled under msan.\n");
fprintf(stderr, "Usage: libtool --mode=execute valgrind ./ctime_tests\n");
return 1;
}
ctx = secp256k1_context_create(SECP256K1_CONTEXT_DECLASSIFY);
/** In theory, testing with a single secret input should be sufficient:
* If control flow depended on secrets the tool would generate an error.
*/
for (i = 0; i < 32; i++) {
key[i] = i + 65;
}
run_tests(ctx, key);
/* Test context randomisation. Do this last because it leaves the context
* tainted. */
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_context_randomize(ctx, key);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret);
secp256k1_context_destroy(ctx);
return 0;
}
static void run_tests(secp256k1_context *ctx, unsigned char *key) {
secp256k1_ecdsa_signature signature;
secp256k1_pubkey pubkey;
size_t siglen = 74;
size_t outputlen = 33;
int i;
int ret;
unsigned char msg[32];
unsigned char sig[74];
unsigned char spubkey[33];
#ifdef ENABLE_MODULE_RECOVERY
secp256k1_ecdsa_recoverable_signature recoverable_signature;
int recid;
#endif
#ifdef ENABLE_MODULE_EXTRAKEYS
secp256k1_keypair keypair;
#endif
for (i = 0; i < 32; i++) {
msg[i] = i + 1;
}
/* Test keygen. */
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ec_pubkey_create(ctx, &pubkey, key);
SECP256K1_CHECKMEM_DEFINE(&pubkey, sizeof(secp256k1_pubkey));
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret);
CHECK(secp256k1_ec_pubkey_serialize(ctx, spubkey, &outputlen, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
/* Test signing. */
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ecdsa_sign(ctx, &signature, msg, key, NULL, NULL);
SECP256K1_CHECKMEM_DEFINE(&signature, sizeof(secp256k1_ecdsa_signature));
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret);
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature));
#ifdef ENABLE_MODULE_ECDH
/* Test ECDH. */
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ecdh(ctx, msg, &pubkey, key, NULL, NULL);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
#endif
#ifdef ENABLE_MODULE_RECOVERY
/* Test signing a recoverable signature. */
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ecdsa_sign_recoverable(ctx, &recoverable_signature, msg, key, NULL, NULL);
SECP256K1_CHECKMEM_DEFINE(&recoverable_signature, sizeof(recoverable_signature));
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret);
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &recoverable_signature));
CHECK(recid >= 0 && recid <= 3);
#endif
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ec_seckey_verify(ctx, key);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ec_seckey_negate(ctx, key);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
SECP256K1_CHECKMEM_UNDEFINE(msg, 32);
ret = secp256k1_ec_seckey_tweak_add(ctx, key, msg);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
SECP256K1_CHECKMEM_UNDEFINE(msg, 32);
ret = secp256k1_ec_seckey_tweak_mul(ctx, key, msg);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
/* Test keypair_create and keypair_xonly_tweak_add. */
#ifdef ENABLE_MODULE_EXTRAKEYS
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_keypair_create(ctx, &keypair, key);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
/* The tweak is not treated as a secret in keypair_tweak_add */
SECP256K1_CHECKMEM_DEFINE(msg, 32);
ret = secp256k1_keypair_xonly_tweak_add(ctx, &keypair, msg);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
SECP256K1_CHECKMEM_UNDEFINE(&keypair, sizeof(keypair));
ret = secp256k1_keypair_sec(ctx, key, &keypair);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_keypair_create(ctx, &keypair, key);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
ret = secp256k1_schnorrsig_sign32(ctx, sig, msg, &keypair, NULL);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
#endif
}

21
ext/secp256k1/src/ecdsa.h Normal file
View File

@ -0,0 +1,21 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECDSA_H
#define SECP256K1_ECDSA_H
#include <stddef.h>
#include "scalar.h"
#include "group.h"
#include "ecmult.h"
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *r, secp256k1_scalar *s, const unsigned char *sig, size_t size);
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar *r, const secp256k1_scalar *s);
static int secp256k1_ecdsa_sig_verify(const secp256k1_scalar* r, const secp256k1_scalar* s, const secp256k1_ge *pubkey, const secp256k1_scalar *message);
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid);
#endif /* SECP256K1_ECDSA_H */

View File

@ -0,0 +1,316 @@
/***********************************************************************
* Copyright (c) 2013-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECDSA_IMPL_H
#define SECP256K1_ECDSA_IMPL_H
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult.h"
#include "ecmult_gen.h"
#include "ecdsa.h"
/** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
* sage: for t in xrange(1023, -1, -1):
* .. p = 2**256 - 2**32 - t
* .. if p.is_prime():
* .. print '%x'%p
* .. break
* 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
* 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
*/
static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
);
/** Difference between field and order, values 'p' and 'n' values defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
* sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
* '14551231950b75fc4402da1722fc9baee'
*/
static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
);
static int secp256k1_der_read_len(size_t *len, const unsigned char **sigp, const unsigned char *sigend) {
size_t lenleft;
unsigned char b1;
VERIFY_CHECK(len != NULL);
*len = 0;
if (*sigp >= sigend) {
return 0;
}
b1 = *((*sigp)++);
if (b1 == 0xFF) {
/* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */
return 0;
}
if ((b1 & 0x80) == 0) {
/* X.690-0207 8.1.3.4 short form length octets */
*len = b1;
return 1;
}
if (b1 == 0x80) {
/* Indefinite length is not allowed in DER. */
return 0;
}
/* X.690-207 8.1.3.5 long form length octets */
lenleft = b1 & 0x7F; /* lenleft is at least 1 */
if (lenleft > (size_t)(sigend - *sigp)) {
return 0;
}
if (**sigp == 0) {
/* Not the shortest possible length encoding. */
return 0;
}
if (lenleft > sizeof(size_t)) {
/* The resulting length would exceed the range of a size_t, so
* certainly longer than the passed array size.
*/
return 0;
}
while (lenleft > 0) {
*len = (*len << 8) | **sigp;
(*sigp)++;
lenleft--;
}
if (*len > (size_t)(sigend - *sigp)) {
/* Result exceeds the length of the passed array. */
return 0;
}
if (*len < 128) {
/* Not the shortest possible length encoding. */
return 0;
}
return 1;
}
static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend) {
int overflow = 0;
unsigned char ra[32] = {0};
size_t rlen;
if (*sig == sigend || **sig != 0x02) {
/* Not a primitive integer (X.690-0207 8.3.1). */
return 0;
}
(*sig)++;
if (secp256k1_der_read_len(&rlen, sig, sigend) == 0) {
return 0;
}
if (rlen == 0 || rlen > (size_t)(sigend - *sig)) {
/* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1). */
return 0;
}
if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) {
/* Excessive 0x00 padding. */
return 0;
}
if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) {
/* Excessive 0xFF padding. */
return 0;
}
if ((**sig & 0x80) == 0x80) {
/* Negative. */
overflow = 1;
}
/* There is at most one leading zero byte:
* if there were two leading zero bytes, we would have failed and returned 0
* because of excessive 0x00 padding already. */
if (rlen > 0 && **sig == 0) {
/* Skip leading zero byte */
rlen--;
(*sig)++;
}
if (rlen > 32) {
overflow = 1;
}
if (!overflow) {
if (rlen) memcpy(ra + 32 - rlen, *sig, rlen);
secp256k1_scalar_set_b32(r, ra, &overflow);
}
if (overflow) {
secp256k1_scalar_set_int(r, 0);
}
(*sig) += rlen;
return 1;
}
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
const unsigned char *sigend = sig + size;
size_t rlen;
if (sig == sigend || *(sig++) != 0x30) {
/* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */
return 0;
}
if (secp256k1_der_read_len(&rlen, &sig, sigend) == 0) {
return 0;
}
if (rlen != (size_t)(sigend - sig)) {
/* Tuple exceeds bounds or garage after tuple. */
return 0;
}
if (!secp256k1_der_parse_integer(rr, &sig, sigend)) {
return 0;
}
if (!secp256k1_der_parse_integer(rs, &sig, sigend)) {
return 0;
}
if (sig != sigend) {
/* Trailing garbage inside tuple. */
return 0;
}
return 1;
}
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
unsigned char r[33] = {0}, s[33] = {0};
unsigned char *rp = r, *sp = s;
size_t lenR = 33, lenS = 33;
secp256k1_scalar_get_b32(&r[1], ar);
secp256k1_scalar_get_b32(&s[1], as);
while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
if (*size < 6+lenS+lenR) {
*size = 6 + lenS + lenR;
return 0;
}
*size = 6 + lenS + lenR;
sig[0] = 0x30;
sig[1] = 4 + lenS + lenR;
sig[2] = 0x02;
sig[3] = lenR;
memcpy(sig+4, rp, lenR);
sig[4+lenR] = 0x02;
sig[5+lenR] = lenS;
memcpy(sig+lenR+6, sp, lenS);
return 1;
}
static int secp256k1_ecdsa_sig_verify(const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
unsigned char c[32];
secp256k1_scalar sn, u1, u2;
#if !defined(EXHAUSTIVE_TEST_ORDER)
secp256k1_fe xr;
#endif
secp256k1_gej pubkeyj;
secp256k1_gej pr;
if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
return 0;
}
secp256k1_scalar_inverse_var(&sn, sigs);
secp256k1_scalar_mul(&u1, &sn, message);
secp256k1_scalar_mul(&u2, &sn, sigr);
secp256k1_gej_set_ge(&pubkeyj, pubkey);
secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1);
if (secp256k1_gej_is_infinity(&pr)) {
return 0;
}
#if defined(EXHAUSTIVE_TEST_ORDER)
{
secp256k1_scalar computed_r;
secp256k1_ge pr_ge;
secp256k1_ge_set_gej(&pr_ge, &pr);
secp256k1_fe_normalize(&pr_ge.x);
secp256k1_fe_get_b32(c, &pr_ge.x);
secp256k1_scalar_set_b32(&computed_r, c, NULL);
return secp256k1_scalar_eq(sigr, &computed_r);
}
#else
secp256k1_scalar_get_b32(c, sigr);
/* we can ignore the fe_set_b32_limit return value, because we know the input is in range */
(void)secp256k1_fe_set_b32_limit(&xr, c);
/** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
* in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
* compute the remainder modulo n, and compare it to xr. However:
*
* xr == X(pr) mod n
* <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
* [Since 2 * n > p, h can only be 0 or 1]
* <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
* [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
* <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
* [Multiplying both sides of the equations by pr.z^2 mod p]
* <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
*
* Thus, we can avoid the inversion, but we have to check both cases separately.
* secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
*/
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* xr * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
/* xr + n >= p, so we can skip testing the second case. */
return 0;
}
secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
return 0;
#endif
}
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
unsigned char b[32];
secp256k1_gej rp;
secp256k1_ge r;
secp256k1_scalar n;
int overflow = 0;
int high;
secp256k1_ecmult_gen(ctx, &rp, nonce);
secp256k1_ge_set_gej(&r, &rp);
secp256k1_fe_normalize(&r.x);
secp256k1_fe_normalize(&r.y);
secp256k1_fe_get_b32(b, &r.x);
secp256k1_scalar_set_b32(sigr, b, &overflow);
if (recid) {
/* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log
* of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria.
*/
*recid = (overflow << 1) | secp256k1_fe_is_odd(&r.y);
}
secp256k1_scalar_mul(&n, sigr, seckey);
secp256k1_scalar_add(&n, &n, message);
secp256k1_scalar_inverse(sigs, nonce);
secp256k1_scalar_mul(sigs, sigs, &n);
secp256k1_scalar_clear(&n);
secp256k1_gej_clear(&rp);
secp256k1_ge_clear(&r);
high = secp256k1_scalar_is_high(sigs);
secp256k1_scalar_cond_negate(sigs, high);
if (recid) {
*recid ^= high;
}
/* P.x = order is on the curve, so technically sig->r could end up being zero, which would be an invalid signature.
* This is cryptographically unreachable as hitting it requires finding the discrete log of P.x = N.
*/
return (int)(!secp256k1_scalar_is_zero(sigr)) & (int)(!secp256k1_scalar_is_zero(sigs));
}
#endif /* SECP256K1_ECDSA_IMPL_H */

25
ext/secp256k1/src/eckey.h Normal file
View File

@ -0,0 +1,25 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECKEY_H
#define SECP256K1_ECKEY_H
#include <stddef.h>
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#include "ecmult_gen.h"
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size);
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed);
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_pubkey_tweak_add(secp256k1_ge *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_pubkey_tweak_mul(secp256k1_ge *key, const secp256k1_scalar *tweak);
#endif /* SECP256K1_ECKEY_H */

View File

@ -0,0 +1,96 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECKEY_IMPL_H
#define SECP256K1_ECKEY_IMPL_H
#include "eckey.h"
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult_gen.h"
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size) {
if (size == 33 && (pub[0] == SECP256K1_TAG_PUBKEY_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_ODD)) {
secp256k1_fe x;
return secp256k1_fe_set_b32_limit(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == SECP256K1_TAG_PUBKEY_ODD);
} else if (size == 65 && (pub[0] == SECP256K1_TAG_PUBKEY_UNCOMPRESSED || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD)) {
secp256k1_fe x, y;
if (!secp256k1_fe_set_b32_limit(&x, pub+1) || !secp256k1_fe_set_b32_limit(&y, pub+33)) {
return 0;
}
secp256k1_ge_set_xy(elem, &x, &y);
if ((pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD) &&
secp256k1_fe_is_odd(&y) != (pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD)) {
return 0;
}
return secp256k1_ge_is_valid_var(elem);
} else {
return 0;
}
}
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed) {
if (secp256k1_ge_is_infinity(elem)) {
return 0;
}
secp256k1_fe_normalize_var(&elem->x);
secp256k1_fe_normalize_var(&elem->y);
secp256k1_fe_get_b32(&pub[1], &elem->x);
if (compressed) {
*size = 33;
pub[0] = secp256k1_fe_is_odd(&elem->y) ? SECP256K1_TAG_PUBKEY_ODD : SECP256K1_TAG_PUBKEY_EVEN;
} else {
*size = 65;
pub[0] = SECP256K1_TAG_PUBKEY_UNCOMPRESSED;
secp256k1_fe_get_b32(&pub[33], &elem->y);
}
return 1;
}
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
secp256k1_scalar_add(key, key, tweak);
return !secp256k1_scalar_is_zero(key);
}
static int secp256k1_eckey_pubkey_tweak_add(secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_gej pt;
secp256k1_scalar one;
secp256k1_gej_set_ge(&pt, key);
secp256k1_scalar_set_int(&one, 1);
secp256k1_ecmult(&pt, &pt, &one, tweak);
if (secp256k1_gej_is_infinity(&pt)) {
return 0;
}
secp256k1_ge_set_gej(key, &pt);
return 1;
}
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
int ret;
ret = !secp256k1_scalar_is_zero(tweak);
secp256k1_scalar_mul(key, key, tweak);
return ret;
}
static int secp256k1_eckey_pubkey_tweak_mul(secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_scalar zero;
secp256k1_gej pt;
if (secp256k1_scalar_is_zero(tweak)) {
return 0;
}
secp256k1_scalar_set_int(&zero, 0);
secp256k1_gej_set_ge(&pt, key);
secp256k1_ecmult(&pt, &pt, tweak, &zero);
secp256k1_ge_set_gej(key, &pt);
return 1;
}
#endif /* SECP256K1_ECKEY_IMPL_H */

View File

@ -0,0 +1,61 @@
/***********************************************************************
* Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_H
#define SECP256K1_ECMULT_H
#include "group.h"
#include "scalar.h"
#include "scratch.h"
#ifndef ECMULT_WINDOW_SIZE
# define ECMULT_WINDOW_SIZE 15
# ifdef DEBUG_CONFIG
# pragma message DEBUG_CONFIG_MSG("ECMULT_WINDOW_SIZE undefined, assuming default value")
# endif
#endif
#ifdef DEBUG_CONFIG
# pragma message DEBUG_CONFIG_DEF(ECMULT_WINDOW_SIZE)
#endif
/* Noone will ever need more than a window size of 24. The code might
* be correct for larger values of ECMULT_WINDOW_SIZE but this is not
* tested.
*
* The following limitations are known, and there are probably more:
* If WINDOW_G > 27 and size_t has 32 bits, then the code is incorrect
* because the size of the memory object that we allocate (in bytes)
* will not fit in a size_t.
* If WINDOW_G > 31 and int has 32 bits, then the code is incorrect
* because certain expressions will overflow.
*/
#if ECMULT_WINDOW_SIZE < 2 || ECMULT_WINDOW_SIZE > 24
# error Set ECMULT_WINDOW_SIZE to an integer in range [2..24].
#endif
/** The number of entries a table with precomputed multiples needs to have. */
#define ECMULT_TABLE_SIZE(w) (1L << ((w)-2))
/** Double multiply: R = na*A + ng*G */
static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng);
typedef int (secp256k1_ecmult_multi_callback)(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data);
/**
* Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai.
* Chooses the right algorithm for a given number of points and scratch space
* size. Resets and overwrites the given scratch space. If the points do not
* fit in the scratch space the algorithm is repeatedly run with batches of
* points. If no scratch space is given then a simple algorithm is used that
* simply multiplies the points with the corresponding scalars and adds them up.
* Returns: 1 on success (including when inp_g_sc is NULL and n is 0)
* 0 if there is not enough scratch space for a single point or
* callback returns 0
*/
static int secp256k1_ecmult_multi_var(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n);
#endif /* SECP256K1_ECMULT_H */

View File

@ -0,0 +1,16 @@
/*****************************************************************************************************
* Copyright (c) 2013, 2014, 2017, 2021 Pieter Wuille, Andrew Poelstra, Jonas Nick, Russell O'Connor *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php. *
*****************************************************************************************************/
#ifndef SECP256K1_ECMULT_COMPUTE_TABLE_H
#define SECP256K1_ECMULT_COMPUTE_TABLE_H
/* Construct table of all odd multiples of gen in range 1..(2**(window_g-1)-1). */
static void secp256k1_ecmult_compute_table(secp256k1_ge_storage* table, int window_g, const secp256k1_gej* gen);
/* Like secp256k1_ecmult_compute_table, but one for both gen and gen*2^128. */
static void secp256k1_ecmult_compute_two_tables(secp256k1_ge_storage* table, secp256k1_ge_storage* table_128, int window_g, const secp256k1_ge* gen);
#endif /* SECP256K1_ECMULT_COMPUTE_TABLE_H */

View File

@ -0,0 +1,49 @@
/*****************************************************************************************************
* Copyright (c) 2013, 2014, 2017, 2021 Pieter Wuille, Andrew Poelstra, Jonas Nick, Russell O'Connor *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php. *
*****************************************************************************************************/
#ifndef SECP256K1_ECMULT_COMPUTE_TABLE_IMPL_H
#define SECP256K1_ECMULT_COMPUTE_TABLE_IMPL_H
#include "ecmult_compute_table.h"
#include "group_impl.h"
#include "field_impl.h"
#include "ecmult.h"
#include "util.h"
static void secp256k1_ecmult_compute_table(secp256k1_ge_storage* table, int window_g, const secp256k1_gej* gen) {
secp256k1_gej gj;
secp256k1_ge ge, dgen;
int j;
gj = *gen;
secp256k1_ge_set_gej_var(&ge, &gj);
secp256k1_ge_to_storage(&table[0], &ge);
secp256k1_gej_double_var(&gj, gen, NULL);
secp256k1_ge_set_gej_var(&dgen, &gj);
for (j = 1; j < ECMULT_TABLE_SIZE(window_g); ++j) {
secp256k1_gej_set_ge(&gj, &ge);
secp256k1_gej_add_ge_var(&gj, &gj, &dgen, NULL);
secp256k1_ge_set_gej_var(&ge, &gj);
secp256k1_ge_to_storage(&table[j], &ge);
}
}
/* Like secp256k1_ecmult_compute_table, but one for both gen and gen*2^128. */
static void secp256k1_ecmult_compute_two_tables(secp256k1_ge_storage* table, secp256k1_ge_storage* table_128, int window_g, const secp256k1_ge* gen) {
secp256k1_gej gj;
int i;
secp256k1_gej_set_ge(&gj, gen);
secp256k1_ecmult_compute_table(table, window_g, &gj);
for (i = 0; i < 128; ++i) {
secp256k1_gej_double_var(&gj, &gj, NULL);
}
secp256k1_ecmult_compute_table(table_128, window_g, &gj);
}
#endif /* SECP256K1_ECMULT_COMPUTE_TABLE_IMPL_H */

View File

@ -0,0 +1,38 @@
/***********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_CONST_H
#define SECP256K1_ECMULT_CONST_H
#include "scalar.h"
#include "group.h"
/**
* Multiply: R = q*A (in constant-time for q)
*/
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q);
/**
* Same as secp256k1_ecmult_const, but takes in an x coordinate of the base point
* only, specified as fraction n/d (numerator/denominator). Only the x coordinate of the result is
* returned.
*
* If known_on_curve is 0, a verification is performed that n/d is a valid X
* coordinate, and 0 is returned if not. Otherwise, 1 is returned.
*
* d being NULL is interpreted as d=1. If non-NULL, d must not be zero. q must not be zero.
*
* Constant time in the value of q, but not any other inputs.
*/
static int secp256k1_ecmult_const_xonly(
secp256k1_fe *r,
const secp256k1_fe *n,
const secp256k1_fe *d,
const secp256k1_scalar *q,
int known_on_curve
);
#endif /* SECP256K1_ECMULT_CONST_H */

View File

@ -0,0 +1,354 @@
/***********************************************************************
* Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_CONST_IMPL_H
#define SECP256K1_ECMULT_CONST_IMPL_H
#include "scalar.h"
#include "group.h"
#include "ecmult_const.h"
#include "ecmult_impl.h"
/** Fill a table 'pre' with precomputed odd multiples of a.
*
* The resulting point set is brought to a single constant Z denominator, stores the X and Y
* coordinates as ge_storage points in pre, and stores the global Z in globalz.
* It only operates on tables sized for WINDOW_A wnaf multiples.
*/
static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), pre, zr, globalz, a);
secp256k1_ge_table_set_globalz(ECMULT_TABLE_SIZE(WINDOW_A), pre, zr);
}
/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
int m = 0; \
/* Extract the sign-bit for a constant time absolute-value. */ \
int volatile mask = (n) >> (sizeof(n) * CHAR_BIT - 1); \
int abs_n = ((n) + mask) ^ mask; \
int idx_n = abs_n >> 1; \
secp256k1_fe neg_y; \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
/* Unconditionally set r->x = (pre)[m].x. r->y = (pre)[m].y. because it's either the correct one \
* or will get replaced in the later iterations, this is needed to make sure `r` is initialized. */ \
(r)->x = (pre)[m].x; \
(r)->y = (pre)[m].y; \
for (m = 1; m < ECMULT_TABLE_SIZE(w); m++) { \
/* This loop is used to avoid secret data in array indices. See
* the comment in ecmult_gen_impl.h for rationale. */ \
secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
} \
(r)->infinity = 0; \
secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
} while(0)
/** Convert a number to WNAF notation.
* The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
* It has the following guarantees:
* - each wnaf[i] an odd integer between -(1 << w) and (1 << w)
* - each wnaf[i] is nonzero
* - the number of words set is always WNAF_SIZE(w) + 1
*
* Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar
* Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.)
* CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlag Berlin Heidelberg 2003
*
* Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335
*/
static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w, int size) {
int global_sign;
int skew;
int word = 0;
/* 1 2 3 */
int u_last;
int u;
int flip;
secp256k1_scalar s = *scalar;
VERIFY_CHECK(w > 0);
VERIFY_CHECK(size > 0);
/* Note that we cannot handle even numbers by negating them to be odd, as is
* done in other implementations, since if our scalars were specified to have
* width < 256 for performance reasons, their negations would have width 256
* and we'd lose any performance benefit. Instead, we use a variation of a
* technique from Section 4.2 of the Okeya/Tagaki paper, which is to add 1 to the
* number we are encoding when it is even, returning a skew value indicating
* this, and having the caller compensate after doing the multiplication.
*
* In fact, we _do_ want to negate numbers to minimize their bit-lengths (and in
* particular, to ensure that the outputs from the endomorphism-split fit into
* 128 bits). If we negate, the parity of our number flips, affecting whether
* we want to add to the scalar to ensure that it's odd. */
flip = secp256k1_scalar_is_high(&s);
skew = flip ^ secp256k1_scalar_is_even(&s);
secp256k1_scalar_cadd_bit(&s, 0, skew);
global_sign = secp256k1_scalar_cond_negate(&s, flip);
/* 4 */
u_last = secp256k1_scalar_shr_int(&s, w);
do {
int even;
/* 4.1 4.4 */
u = secp256k1_scalar_shr_int(&s, w);
/* 4.2 */
even = ((u & 1) == 0);
/* In contrast to the original algorithm, u_last is always > 0 and
* therefore we do not need to check its sign. In particular, it's easy
* to see that u_last is never < 0 because u is never < 0. Moreover,
* u_last is never = 0 because u is never even after a loop
* iteration. The same holds analogously for the initial value of
* u_last (in the first loop iteration). */
VERIFY_CHECK(u_last > 0);
VERIFY_CHECK((u_last & 1) == 1);
u += even;
u_last -= even * (1 << w);
/* 4.3, adapted for global sign change */
wnaf[word++] = u_last * global_sign;
u_last = u;
} while (word * w < size);
wnaf[word] = u * global_sign;
VERIFY_CHECK(secp256k1_scalar_is_zero(&s));
VERIFY_CHECK(word == WNAF_SIZE_BITS(size, w));
return skew;
}
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ge tmpa;
secp256k1_fe Z;
int skew_1;
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
int skew_lam;
secp256k1_scalar q_1, q_lam;
int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
int i;
if (secp256k1_ge_is_infinity(a)) {
secp256k1_gej_set_infinity(r);
return;
}
/* build wnaf representation for q. */
/* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
secp256k1_scalar_split_lambda(&q_1, &q_lam, scalar);
skew_1 = secp256k1_wnaf_const(wnaf_1, &q_1, WINDOW_A - 1, 128);
skew_lam = secp256k1_wnaf_const(wnaf_lam, &q_lam, WINDOW_A - 1, 128);
/* Calculate odd multiples of a.
* All multiples are brought to the same Z 'denominator', which is stored
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
* that the Z coordinate was 1, use affine addition formulae, and correct
* the Z coordinate of the result once at the end.
*/
VERIFY_CHECK(!a->infinity);
secp256k1_gej_set_ge(r, a);
secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_fe_normalize_weak(&pre_a[i].y);
}
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
}
/* first loop iteration (separated out so we can directly set r, rather
* than having it start at infinity, get doubled several times, then have
* its new value added to it) */
i = wnaf_1[WNAF_SIZE_BITS(128, WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
secp256k1_gej_set_ge(r, &tmpa);
i = wnaf_lam[WNAF_SIZE_BITS(128, WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
secp256k1_gej_add_ge(r, r, &tmpa);
/* remaining loop iterations */
for (i = WNAF_SIZE_BITS(128, WINDOW_A - 1) - 1; i >= 0; i--) {
int n;
int j;
for (j = 0; j < WINDOW_A - 1; ++j) {
secp256k1_gej_double(r, r);
}
n = wnaf_1[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
n = wnaf_lam[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
}
{
/* Correct for wNAF skew */
secp256k1_gej tmpj;
secp256k1_ge_neg(&tmpa, &pre_a[0]);
secp256k1_gej_add_ge(&tmpj, r, &tmpa);
secp256k1_gej_cmov(r, &tmpj, skew_1);
secp256k1_ge_neg(&tmpa, &pre_a_lam[0]);
secp256k1_gej_add_ge(&tmpj, r, &tmpa);
secp256k1_gej_cmov(r, &tmpj, skew_lam);
}
secp256k1_fe_mul(&r->z, &r->z, &Z);
}
static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n, const secp256k1_fe *d, const secp256k1_scalar *q, int known_on_curve) {
/* This algorithm is a generalization of Peter Dettman's technique for
* avoiding the square root in a random-basepoint x-only multiplication
* on a Weierstrass curve:
* https://mailarchive.ietf.org/arch/msg/cfrg/7DyYY6gg32wDgHAhgSb6XxMDlJA/
*
*
* === Background: the effective affine technique ===
*
* Let phi_u be the isomorphism that maps (x, y) on secp256k1 curve y^2 = x^3 + 7 to
* x' = u^2*x, y' = u^3*y on curve y'^2 = x'^3 + u^6*7. This new curve has the same order as
* the original (it is isomorphic), but moreover, has the same addition/doubling formulas, as
* the curve b=7 coefficient does not appear in those formulas (or at least does not appear in
* the formulas implemented in this codebase, both affine and Jacobian). See also Example 9.5.2
* in https://www.math.auckland.ac.nz/~sgal018/crypto-book/ch9.pdf.
*
* This means any linear combination of secp256k1 points can be computed by applying phi_u
* (with non-zero u) on all input points (including the generator, if used), computing the
* linear combination on the isomorphic curve (using the same group laws), and then applying
* phi_u^{-1} to get back to secp256k1.
*
* Switching to Jacobian coordinates, note that phi_u applied to (X, Y, Z) is simply
* (X, Y, Z/u). Thus, if we want to compute (X1, Y1, Z) + (X2, Y2, Z), with identical Z
* coordinates, we can use phi_Z to transform it to (X1, Y1, 1) + (X2, Y2, 1) on an isomorphic
* curve where the affine addition formula can be used instead.
* If (X3, Y3, Z3) = (X1, Y1) + (X2, Y2) on that curve, then our answer on secp256k1 is
* (X3, Y3, Z3*Z).
*
* This is the effective affine technique: if we have a linear combination of group elements
* to compute, and all those group elements have the same Z coordinate, we can simply pretend
* that all those Z coordinates are 1, perform the computation that way, and then multiply the
* original Z coordinate back in.
*
* The technique works on any a=0 short Weierstrass curve. It is possible to generalize it to
* other curves too, but there the isomorphic curves will have different 'a' coefficients,
* which typically does affect the group laws.
*
*
* === Avoiding the square root for x-only point multiplication ===
*
* In this function, we want to compute the X coordinate of q*(n/d, y), for
* y = sqrt((n/d)^3 + 7). Its negation would also be a valid Y coordinate, but by convention
* we pick whatever sqrt returns (which we assume to be a deterministic function).
*
* Let g = y^2*d^3 = n^3 + 7*d^3. This also means y = sqrt(g/d^3).
* Further let v = sqrt(d*g), which must exist as d*g = y^2*d^4 = (y*d^2)^2.
*
* The input point (n/d, y) also has Jacobian coordinates:
*
* (n/d, y, 1)
* = (n/d * v^2, y * v^3, v)
* = (n/d * d*g, y * sqrt(d^3*g^3), v)
* = (n/d * d*g, sqrt(y^2 * d^3*g^3), v)
* = (n*g, sqrt(g/d^3 * d^3*g^3), v)
* = (n*g, sqrt(g^4), v)
* = (n*g, g^2, v)
*
* It is easy to verify that both (n*g, g^2, v) and its negation (n*g, -g^2, v) have affine X
* coordinate n/d, and this holds even when the square root function doesn't have a
* determinstic sign. We choose the (n*g, g^2, v) version.
*
* Now switch to the effective affine curve using phi_v, where the input point has coordinates
* (n*g, g^2). Compute (X, Y, Z) = q * (n*g, g^2) there.
*
* Back on secp256k1, that means q * (n*g, g^2, v) = (X, Y, v*Z). This last point has affine X
* coordinate X / (v^2*Z^2) = X / (d*g*Z^2). Determining the affine Y coordinate would involve
* a square root, but as long as we only care about the resulting X coordinate, no square root
* is needed anywhere in this computation.
*/
secp256k1_fe g, i;
secp256k1_ge p;
secp256k1_gej rj;
/* Compute g = (n^3 + B*d^3). */
secp256k1_fe_sqr(&g, n);
secp256k1_fe_mul(&g, &g, n);
if (d) {
secp256k1_fe b;
#ifdef VERIFY
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero(d));
#endif
secp256k1_fe_sqr(&b, d);
VERIFY_CHECK(SECP256K1_B <= 8); /* magnitude of b will be <= 8 after the next call */
secp256k1_fe_mul_int(&b, SECP256K1_B);
secp256k1_fe_mul(&b, &b, d);
secp256k1_fe_add(&g, &b);
if (!known_on_curve) {
/* We need to determine whether (n/d)^3 + 7 is square.
*
* is_square((n/d)^3 + 7)
* <=> is_square(((n/d)^3 + 7) * d^4)
* <=> is_square((n^3 + 7*d^3) * d)
* <=> is_square(g * d)
*/
secp256k1_fe c;
secp256k1_fe_mul(&c, &g, d);
if (!secp256k1_fe_is_square_var(&c)) return 0;
}
} else {
secp256k1_fe_add_int(&g, SECP256K1_B);
if (!known_on_curve) {
/* g at this point equals x^3 + 7. Test if it is square. */
if (!secp256k1_fe_is_square_var(&g)) return 0;
}
}
/* Compute base point P = (n*g, g^2), the effective affine version of (n*g, g^2, v), which has
* corresponding affine X coordinate n/d. */
secp256k1_fe_mul(&p.x, &g, n);
secp256k1_fe_sqr(&p.y, &g);
p.infinity = 0;
/* Perform x-only EC multiplication of P with q. */
#ifdef VERIFY
VERIFY_CHECK(!secp256k1_scalar_is_zero(q));
#endif
secp256k1_ecmult_const(&rj, &p, q);
#ifdef VERIFY
VERIFY_CHECK(!secp256k1_gej_is_infinity(&rj));
#endif
/* The resulting (X, Y, Z) point on the effective-affine isomorphic curve corresponds to
* (X, Y, Z*v) on the secp256k1 curve. The affine version of that has X coordinate
* (X / (Z^2*d*g)). */
secp256k1_fe_sqr(&i, &rj.z);
secp256k1_fe_mul(&i, &i, &g);
if (d) secp256k1_fe_mul(&i, &i, d);
secp256k1_fe_inv(&i, &i);
secp256k1_fe_mul(r, &rj.x, &i);
return 1;
}
#endif /* SECP256K1_ECMULT_CONST_IMPL_H */

View File

@ -0,0 +1,48 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_GEN_H
#define SECP256K1_ECMULT_GEN_H
#include "scalar.h"
#include "group.h"
#ifndef ECMULT_GEN_PREC_BITS
# define ECMULT_GEN_PREC_BITS 4
# ifdef DEBUG_CONFIG
# pragma message DEBUG_CONFIG_MSG("ECMULT_GEN_PREC_BITS undefined, assuming default value")
# endif
#endif
#ifdef DEBUG_CONFIG
# pragma message DEBUG_CONFIG_DEF(ECMULT_GEN_PREC_BITS)
#endif
#if ECMULT_GEN_PREC_BITS != 2 && ECMULT_GEN_PREC_BITS != 4 && ECMULT_GEN_PREC_BITS != 8
# error "Set ECMULT_GEN_PREC_BITS to 2, 4 or 8."
#endif
#define ECMULT_GEN_PREC_G(bits) (1 << bits)
#define ECMULT_GEN_PREC_N(bits) (256 / bits)
typedef struct {
/* Whether the context has been built. */
int built;
/* Blinding values used when computing (n-b)G + bG. */
secp256k1_scalar blind; /* -b */
secp256k1_gej initial; /* bG */
} secp256k1_ecmult_gen_context;
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context* ctx);
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context* ctx);
/** Multiply with the generator: R = a*G */
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context* ctx, secp256k1_gej *r, const secp256k1_scalar *a);
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32);
#endif /* SECP256K1_ECMULT_GEN_H */

View File

@ -0,0 +1,14 @@
/***********************************************************************
* Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_GEN_COMPUTE_TABLE_H
#define SECP256K1_ECMULT_GEN_COMPUTE_TABLE_H
#include "ecmult_gen.h"
static void secp256k1_ecmult_gen_compute_table(secp256k1_ge_storage* table, const secp256k1_ge* gen, int bits);
#endif /* SECP256K1_ECMULT_GEN_COMPUTE_TABLE_H */

View File

@ -0,0 +1,81 @@
/***********************************************************************
* Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_GEN_COMPUTE_TABLE_IMPL_H
#define SECP256K1_ECMULT_GEN_COMPUTE_TABLE_IMPL_H
#include "ecmult_gen_compute_table.h"
#include "group_impl.h"
#include "field_impl.h"
#include "ecmult_gen.h"
#include "util.h"
static void secp256k1_ecmult_gen_compute_table(secp256k1_ge_storage* table, const secp256k1_ge* gen, int bits) {
int g = ECMULT_GEN_PREC_G(bits);
int n = ECMULT_GEN_PREC_N(bits);
secp256k1_ge* prec = checked_malloc(&default_error_callback, n * g * sizeof(*prec));
secp256k1_gej gj;
secp256k1_gej nums_gej;
int i, j;
/* get the generator */
secp256k1_gej_set_ge(&gj, gen);
/* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
{
static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
secp256k1_fe nums_x;
secp256k1_ge nums_ge;
int r;
r = secp256k1_fe_set_b32_limit(&nums_x, nums_b32);
(void)r;
VERIFY_CHECK(r);
r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0);
(void)r;
VERIFY_CHECK(r);
secp256k1_gej_set_ge(&nums_gej, &nums_ge);
/* Add G to make the bits in x uniformly distributed. */
secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, gen, NULL);
}
/* compute prec. */
{
secp256k1_gej gbase;
secp256k1_gej numsbase;
secp256k1_gej* precj = checked_malloc(&default_error_callback, n * g * sizeof(*precj)); /* Jacobian versions of prec. */
gbase = gj; /* PREC_G^j * G */
numsbase = nums_gej; /* 2^j * nums. */
for (j = 0; j < n; j++) {
/* Set precj[j*PREC_G .. j*PREC_G+(PREC_G-1)] to (numsbase, numsbase + gbase, ..., numsbase + (PREC_G-1)*gbase). */
precj[j*g] = numsbase;
for (i = 1; i < g; i++) {
secp256k1_gej_add_var(&precj[j*g + i], &precj[j*g + i - 1], &gbase, NULL);
}
/* Multiply gbase by PREC_G. */
for (i = 0; i < bits; i++) {
secp256k1_gej_double_var(&gbase, &gbase, NULL);
}
/* Multiply numbase by 2. */
secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
if (j == n - 2) {
/* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
secp256k1_gej_neg(&numsbase, &numsbase);
secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
}
}
secp256k1_ge_set_all_gej_var(prec, precj, n * g);
free(precj);
}
for (j = 0; j < n; j++) {
for (i = 0; i < g; i++) {
secp256k1_ge_to_storage(&table[j*g + i], &prec[j*g + i]);
}
}
free(prec);
}
#endif /* SECP256K1_ECMULT_GEN_COMPUTE_TABLE_IMPL_H */

View File

@ -0,0 +1,133 @@
/***********************************************************************
* Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_GEN_IMPL_H
#define SECP256K1_ECMULT_GEN_IMPL_H
#include "util.h"
#include "scalar.h"
#include "group.h"
#include "ecmult_gen.h"
#include "hash_impl.h"
#include "precomputed_ecmult_gen.h"
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx) {
secp256k1_ecmult_gen_blind(ctx, NULL);
ctx->built = 1;
}
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
return ctx->built;
}
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
ctx->built = 0;
secp256k1_scalar_clear(&ctx->blind);
secp256k1_gej_clear(&ctx->initial);
}
/* For accelerating the computation of a*G:
* To harden against timing attacks, use the following mechanism:
* * Break up the multiplicand into groups of PREC_BITS bits, called n_0, n_1, n_2, ..., n_(PREC_N-1).
* * Compute sum(n_i * (PREC_G)^i * G + U_i, i=0 ... PREC_N-1), where:
* * U_i = U * 2^i, for i=0 ... PREC_N-2
* * U_i = U * (1-2^(PREC_N-1)), for i=PREC_N-1
* where U is a point with no known corresponding scalar. Note that sum(U_i, i=0 ... PREC_N-1) = 0.
* For each i, and each of the PREC_G possible values of n_i, (n_i * (PREC_G)^i * G + U_i) is
* precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0 ... PREC_N-1).
* None of the resulting prec group elements have a known scalar, and neither do any of
* the intermediate sums while computing a*G.
* The prec values are stored in secp256k1_ecmult_gen_prec_table[i][n_i] = n_i * (PREC_G)^i * G + U_i.
*/
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
int bits = ECMULT_GEN_PREC_BITS;
int g = ECMULT_GEN_PREC_G(bits);
int n = ECMULT_GEN_PREC_N(bits);
secp256k1_ge add;
secp256k1_ge_storage adds;
secp256k1_scalar gnb;
int i, j, n_i;
memset(&adds, 0, sizeof(adds));
*r = ctx->initial;
/* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
secp256k1_scalar_add(&gnb, gn, &ctx->blind);
add.infinity = 0;
for (i = 0; i < n; i++) {
n_i = secp256k1_scalar_get_bits(&gnb, i * bits, bits);
for (j = 0; j < g; j++) {
/** This uses a conditional move to avoid any secret data in array indexes.
* _Any_ use of secret indexes has been demonstrated to result in timing
* sidechannels, even when the cache-line access patterns are uniform.
* See also:
* "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe
* (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and
* "Cache Attacks and Countermeasures: the Case of AES", RSA 2006,
* by Dag Arne Osvik, Adi Shamir, and Eran Tromer
* (https://www.tau.ac.il/~tromer/papers/cache.pdf)
*/
secp256k1_ge_storage_cmov(&adds, &secp256k1_ecmult_gen_prec_table[i][j], j == n_i);
}
secp256k1_ge_from_storage(&add, &adds);
secp256k1_gej_add_ge(r, r, &add);
}
n_i = 0;
secp256k1_ge_clear(&add);
secp256k1_scalar_clear(&gnb);
}
/* Setup blinding values for secp256k1_ecmult_gen. */
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
secp256k1_scalar b;
secp256k1_gej gb;
secp256k1_fe s;
unsigned char nonce32[32];
secp256k1_rfc6979_hmac_sha256 rng;
int overflow;
unsigned char keydata[64];
if (seed32 == NULL) {
/* When seed is NULL, reset the initial point and blinding value. */
secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
secp256k1_gej_neg(&ctx->initial, &ctx->initial);
secp256k1_scalar_set_int(&ctx->blind, 1);
return;
}
/* The prior blinding value (if not reset) is chained forward by including it in the hash. */
secp256k1_scalar_get_b32(keydata, &ctx->blind);
/** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
* and guards against weak or adversarial seeds. This is a simpler and safer interface than
* asking the caller for blinding values directly and expecting them to retry on failure.
*/
VERIFY_CHECK(seed32 != NULL);
memcpy(keydata + 32, seed32, 32);
secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, 64);
memset(keydata, 0, sizeof(keydata));
/* Accept unobservably small non-uniformity. */
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
overflow = !secp256k1_fe_set_b32_limit(&s, nonce32);
overflow |= secp256k1_fe_is_zero(&s);
secp256k1_fe_cmov(&s, &secp256k1_fe_one, overflow);
/* Randomize the projection to defend against multiplier sidechannels.
Do this before our own call to secp256k1_ecmult_gen below. */
secp256k1_gej_rescale(&ctx->initial, &s);
secp256k1_fe_clear(&s);
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
secp256k1_scalar_set_b32(&b, nonce32, NULL);
/* A blinding value of 0 works, but would undermine the projection hardening. */
secp256k1_scalar_cmov(&b, &secp256k1_scalar_one, secp256k1_scalar_is_zero(&b));
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
memset(nonce32, 0, 32);
/* The random projection in ctx->initial ensures that gb will have a random projection. */
secp256k1_ecmult_gen(ctx, &gb, &b);
secp256k1_scalar_negate(&b, &b);
ctx->blind = b;
ctx->initial = gb;
secp256k1_scalar_clear(&b);
secp256k1_gej_clear(&gb);
}
#endif /* SECP256K1_ECMULT_GEN_IMPL_H */

View File

@ -0,0 +1,865 @@
/******************************************************************************
* Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php. *
******************************************************************************/
#ifndef SECP256K1_ECMULT_IMPL_H
#define SECP256K1_ECMULT_IMPL_H
#include <string.h>
#include <stdint.h>
#include "util.h"
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#include "precomputed_ecmult.h"
#if defined(EXHAUSTIVE_TEST_ORDER)
/* We need to lower these values for exhaustive tests because
* the tables cannot have infinities in them (this breaks the
* affine-isomorphism stuff which tracks z-ratios) */
# if EXHAUSTIVE_TEST_ORDER > 128
# define WINDOW_A 5
# elif EXHAUSTIVE_TEST_ORDER > 8
# define WINDOW_A 4
# else
# define WINDOW_A 2
# endif
#else
/* optimal for 128-bit and 256-bit exponents. */
# define WINDOW_A 5
/** Larger values for ECMULT_WINDOW_SIZE result in possibly better
* performance at the cost of an exponentially larger precomputed
* table. The exact table size is
* (1 << (WINDOW_G - 2)) * sizeof(secp256k1_ge_storage) bytes,
* where sizeof(secp256k1_ge_storage) is typically 64 bytes but can
* be larger due to platform-specific padding and alignment.
* Two tables of this size are used (due to the endomorphism
* optimization).
*/
#endif
#define WNAF_BITS 128
#define WNAF_SIZE_BITS(bits, w) (((bits) + (w) - 1) / (w))
#define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w)
/* The number of objects allocated on the scratch space for ecmult_multi algorithms */
#define PIPPENGER_SCRATCH_OBJECTS 6
#define STRAUSS_SCRATCH_OBJECTS 5
#define PIPPENGER_MAX_BUCKET_WINDOW 12
/* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */
#define ECMULT_PIPPENGER_THRESHOLD 88
#define ECMULT_MAX_POINTS_PER_BATCH 5000000
/** Fill a table 'pre_a' with precomputed odd multiples of a.
* pre_a will contain [1*a,3*a,...,(2*n-1)*a], so it needs space for n group elements.
* zr needs space for n field elements.
*
* Although pre_a is an array of _ge rather than _gej, it actually represents elements
* in Jacobian coordinates with their z coordinates omitted. The omitted z-coordinates
* can be recovered using z and zr. Using the notation z(b) to represent the omitted
* z coordinate of b:
* - z(pre_a[n-1]) = 'z'
* - z(pre_a[i-1]) = z(pre_a[i]) / zr[i] for n > i > 0
*
* Lastly the zr[0] value, which isn't used above, is set so that:
* - a.z = z(pre_a[0]) / zr[0]
*/
static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_ge *pre_a, secp256k1_fe *zr, secp256k1_fe *z, const secp256k1_gej *a) {
secp256k1_gej d, ai;
secp256k1_ge d_ge;
int i;
VERIFY_CHECK(!a->infinity);
secp256k1_gej_double_var(&d, a, NULL);
/*
* Perform the additions using an isomorphic curve Y^2 = X^3 + 7*C^6 where C := d.z.
* The isomorphism, phi, maps a secp256k1 point (x, y) to the point (x*C^2, y*C^3) on the other curve.
* In Jacobian coordinates phi maps (x, y, z) to (x*C^2, y*C^3, z) or, equivalently to (x, y, z/C).
*
* phi(x, y, z) = (x*C^2, y*C^3, z) = (x, y, z/C)
* d_ge := phi(d) = (d.x, d.y, 1)
* ai := phi(a) = (a.x*C^2, a.y*C^3, a.z)
*
* The group addition functions work correctly on these isomorphic curves.
* In particular phi(d) is easy to represent in affine coordinates under this isomorphism.
* This lets us use the faster secp256k1_gej_add_ge_var group addition function that we wouldn't be able to use otherwise.
*/
secp256k1_ge_set_xy(&d_ge, &d.x, &d.y);
secp256k1_ge_set_gej_zinv(&pre_a[0], a, &d.z);
secp256k1_gej_set_ge(&ai, &pre_a[0]);
ai.z = a->z;
/* pre_a[0] is the point (a.x*C^2, a.y*C^3, a.z*C) which is equivalent to a.
* Set zr[0] to C, which is the ratio between the omitted z(pre_a[0]) value and a.z.
*/
zr[0] = d.z;
for (i = 1; i < n; i++) {
secp256k1_gej_add_ge_var(&ai, &ai, &d_ge, &zr[i]);
secp256k1_ge_set_xy(&pre_a[i], &ai.x, &ai.y);
}
/* Multiply the last z-coordinate by C to undo the isomorphism.
* Since the z-coordinates of the pre_a values are implied by the zr array of z-coordinate ratios,
* undoing the isomorphism here undoes the isomorphism for all pre_a values.
*/
secp256k1_fe_mul(z, &ai.z, &d.z);
}
SECP256K1_INLINE static void secp256k1_ecmult_table_verify(int n, int w) {
(void)n;
(void)w;
VERIFY_CHECK(((n) & 1) == 1);
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1));
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1));
}
SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge(secp256k1_ge *r, const secp256k1_ge *pre, int n, int w) {
secp256k1_ecmult_table_verify(n,w);
if (n > 0) {
*r = pre[(n-1)/2];
} else {
*r = pre[(-n-1)/2];
secp256k1_fe_negate(&(r->y), &(r->y), 1);
}
}
SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge_lambda(secp256k1_ge *r, const secp256k1_ge *pre, const secp256k1_fe *x, int n, int w) {
secp256k1_ecmult_table_verify(n,w);
if (n > 0) {
secp256k1_ge_set_xy(r, &x[(n-1)/2], &pre[(n-1)/2].y);
} else {
secp256k1_ge_set_xy(r, &x[(-n-1)/2], &pre[(-n-1)/2].y);
secp256k1_fe_negate(&(r->y), &(r->y), 1);
}
}
SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge_storage(secp256k1_ge *r, const secp256k1_ge_storage *pre, int n, int w) {
secp256k1_ecmult_table_verify(n,w);
if (n > 0) {
secp256k1_ge_from_storage(r, &pre[(n-1)/2]);
} else {
secp256k1_ge_from_storage(r, &pre[(-n-1)/2]);
secp256k1_fe_negate(&(r->y), &(r->y), 1);
}
}
/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
* with the following guarantees:
* - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
* - two non-zero entries in wnaf are separated by at least w-1 zeroes.
* - the number of set values in wnaf is returned. This number is at most 256, and at most one more
* than the number of bits in the (absolute value) of the input.
*/
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
secp256k1_scalar s;
int last_set_bit = -1;
int bit = 0;
int sign = 1;
int carry = 0;
VERIFY_CHECK(wnaf != NULL);
VERIFY_CHECK(0 <= len && len <= 256);
VERIFY_CHECK(a != NULL);
VERIFY_CHECK(2 <= w && w <= 31);
memset(wnaf, 0, len * sizeof(wnaf[0]));
s = *a;
if (secp256k1_scalar_get_bits(&s, 255, 1)) {
secp256k1_scalar_negate(&s, &s);
sign = -1;
}
while (bit < len) {
int now;
int word;
if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) {
bit++;
continue;
}
now = w;
if (now > len - bit) {
now = len - bit;
}
word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
carry = (word >> (w-1)) & 1;
word -= carry << w;
wnaf[bit] = sign * word;
last_set_bit = bit;
bit += now;
}
#ifdef VERIFY
{
int verify_bit = bit;
VERIFY_CHECK(carry == 0);
while (verify_bit < 256) {
VERIFY_CHECK(secp256k1_scalar_get_bits(&s, verify_bit, 1) == 0);
verify_bit++;
}
}
#endif
return last_set_bit + 1;
}
struct secp256k1_strauss_point_state {
int wnaf_na_1[129];
int wnaf_na_lam[129];
int bits_na_1;
int bits_na_lam;
};
struct secp256k1_strauss_state {
/* aux is used to hold z-ratios, and then used to hold pre_a[i].x * BETA values. */
secp256k1_fe* aux;
secp256k1_ge* pre_a;
struct secp256k1_strauss_point_state* ps;
};
static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state *state, secp256k1_gej *r, size_t num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
secp256k1_ge tmpa;
secp256k1_fe Z;
/* Split G factors. */
secp256k1_scalar ng_1, ng_128;
int wnaf_ng_1[129];
int bits_ng_1 = 0;
int wnaf_ng_128[129];
int bits_ng_128 = 0;
int i;
int bits = 0;
size_t np;
size_t no = 0;
secp256k1_fe_set_int(&Z, 1);
for (np = 0; np < num; ++np) {
secp256k1_gej tmp;
secp256k1_scalar na_1, na_lam;
if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) {
continue;
}
/* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
secp256k1_scalar_split_lambda(&na_1, &na_lam, &na[np]);
/* build wnaf representation for na_1 and na_lam. */
state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 129, &na_1, WINDOW_A);
state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 129, &na_lam, WINDOW_A);
VERIFY_CHECK(state->ps[no].bits_na_1 <= 129);
VERIFY_CHECK(state->ps[no].bits_na_lam <= 129);
if (state->ps[no].bits_na_1 > bits) {
bits = state->ps[no].bits_na_1;
}
if (state->ps[no].bits_na_lam > bits) {
bits = state->ps[no].bits_na_lam;
}
/* Calculate odd multiples of a.
* All multiples are brought to the same Z 'denominator', which is stored
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
* that the Z coordinate was 1, use affine addition formulae, and correct
* the Z coordinate of the result once at the end.
* The exception is the precomputed G table points, which are actually
* affine. Compared to the base used for other points, they have a Z ratio
* of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
* isomorphism to efficiently add with a known Z inverse.
*/
tmp = a[np];
if (no) {
secp256k1_gej_rescale(&tmp, &Z);
}
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->pre_a + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &Z, &tmp);
if (no) secp256k1_fe_mul(state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &(a[np].z));
++no;
}
/* Bring them to the same Z denominator. */
secp256k1_ge_table_set_globalz(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, state->aux);
for (np = 0; np < no; ++np) {
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_fe_mul(&state->aux[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i].x, &secp256k1_const_beta);
}
}
if (ng) {
/* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
/* Build wnaf representation for ng_1 and ng_128 */
bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
if (bits_ng_1 > bits) {
bits = bits_ng_1;
}
if (bits_ng_128 > bits) {
bits = bits_ng_128;
}
}
secp256k1_gej_set_infinity(r);
for (i = bits - 1; i >= 0; i--) {
int n;
secp256k1_gej_double_var(r, r, NULL);
for (np = 0; np < no; ++np) {
if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) {
secp256k1_ecmult_table_get_ge(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
}
if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) {
secp256k1_ecmult_table_get_ge_lambda(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
}
}
if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
secp256k1_ecmult_table_get_ge_storage(&tmpa, secp256k1_pre_g, n, WINDOW_G);
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
secp256k1_ecmult_table_get_ge_storage(&tmpa, secp256k1_pre_g_128, n, WINDOW_G);
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
}
if (!r->infinity) {
secp256k1_fe_mul(&r->z, &r->z, &Z);
}
}
static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
secp256k1_fe aux[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
struct secp256k1_strauss_point_state ps[1];
struct secp256k1_strauss_state state;
state.aux = aux;
state.pre_a = pre_a;
state.ps = ps;
secp256k1_ecmult_strauss_wnaf(&state, r, 1, a, na, ng);
}
static size_t secp256k1_strauss_scratch_size(size_t n_points) {
static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar);
return n_points*point_size;
}
static int secp256k1_ecmult_strauss_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
secp256k1_gej* points;
secp256k1_scalar* scalars;
struct secp256k1_strauss_state state;
size_t i;
const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch);
secp256k1_gej_set_infinity(r);
if (inp_g_sc == NULL && n_points == 0) {
return 1;
}
/* We allocate STRAUSS_SCRATCH_OBJECTS objects on the scratch space. If these
* allocations change, make sure to update the STRAUSS_SCRATCH_OBJECTS
* constant and strauss_scratch_size accordingly. */
points = (secp256k1_gej*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_gej));
scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_scalar));
state.aux = (secp256k1_fe*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe));
state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge));
state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(struct secp256k1_strauss_point_state));
if (points == NULL || scalars == NULL || state.aux == NULL || state.pre_a == NULL || state.ps == NULL) {
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
for (i = 0; i < n_points; i++) {
secp256k1_ge point;
if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) {
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
secp256k1_gej_set_ge(&points[i], &point);
}
secp256k1_ecmult_strauss_wnaf(&state, r, n_points, points, scalars, inp_g_sc);
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 1;
}
/* Wrapper for secp256k1_ecmult_multi_func interface */
static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
return secp256k1_ecmult_strauss_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0);
}
static size_t secp256k1_strauss_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) {
return secp256k1_scratch_max_allocation(error_callback, scratch, STRAUSS_SCRATCH_OBJECTS) / secp256k1_strauss_scratch_size(1);
}
/** Convert a number to WNAF notation.
* The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
* It has the following guarantees:
* - each wnaf[i] is either 0 or an odd integer between -(1 << w) and (1 << w)
* - the number of words set is always WNAF_SIZE(w)
* - the returned skew is 0 or 1
*/
static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w) {
int skew = 0;
int pos;
int max_pos;
int last_w;
const secp256k1_scalar *work = s;
if (secp256k1_scalar_is_zero(s)) {
for (pos = 0; pos < WNAF_SIZE(w); pos++) {
wnaf[pos] = 0;
}
return 0;
}
if (secp256k1_scalar_is_even(s)) {
skew = 1;
}
wnaf[0] = secp256k1_scalar_get_bits_var(work, 0, w) + skew;
/* Compute last window size. Relevant when window size doesn't divide the
* number of bits in the scalar */
last_w = WNAF_BITS - (WNAF_SIZE(w) - 1) * w;
/* Store the position of the first nonzero word in max_pos to allow
* skipping leading zeros when calculating the wnaf. */
for (pos = WNAF_SIZE(w) - 1; pos > 0; pos--) {
int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
if(val != 0) {
break;
}
wnaf[pos] = 0;
}
max_pos = pos;
pos = 1;
while (pos <= max_pos) {
int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
if ((val & 1) == 0) {
wnaf[pos - 1] -= (1 << w);
wnaf[pos] = (val + 1);
} else {
wnaf[pos] = val;
}
/* Set a coefficient to zero if it is 1 or -1 and the proceeding digit
* is strictly negative or strictly positive respectively. Only change
* coefficients at previous positions because above code assumes that
* wnaf[pos - 1] is odd.
*/
if (pos >= 2 && ((wnaf[pos - 1] == 1 && wnaf[pos - 2] < 0) || (wnaf[pos - 1] == -1 && wnaf[pos - 2] > 0))) {
if (wnaf[pos - 1] == 1) {
wnaf[pos - 2] += 1 << w;
} else {
wnaf[pos - 2] -= 1 << w;
}
wnaf[pos - 1] = 0;
}
++pos;
}
return skew;
}
struct secp256k1_pippenger_point_state {
int skew_na;
size_t input_pos;
};
struct secp256k1_pippenger_state {
int *wnaf_na;
struct secp256k1_pippenger_point_state* ps;
};
/*
* pippenger_wnaf computes the result of a multi-point multiplication as
* follows: The scalars are brought into wnaf with n_wnaf elements each. Then
* for every i < n_wnaf, first each point is added to a "bucket" corresponding
* to the point's wnaf[i]. Second, the buckets are added together such that
* r += 1*bucket[0] + 3*bucket[1] + 5*bucket[2] + ...
*/
static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, const secp256k1_scalar *sc, const secp256k1_ge *pt, size_t num) {
size_t n_wnaf = WNAF_SIZE(bucket_window+1);
size_t np;
size_t no = 0;
int i;
int j;
for (np = 0; np < num; ++np) {
if (secp256k1_scalar_is_zero(&sc[np]) || secp256k1_ge_is_infinity(&pt[np])) {
continue;
}
state->ps[no].input_pos = np;
state->ps[no].skew_na = secp256k1_wnaf_fixed(&state->wnaf_na[no*n_wnaf], &sc[np], bucket_window+1);
no++;
}
secp256k1_gej_set_infinity(r);
if (no == 0) {
return 1;
}
for (i = n_wnaf - 1; i >= 0; i--) {
secp256k1_gej running_sum;
for(j = 0; j < ECMULT_TABLE_SIZE(bucket_window+2); j++) {
secp256k1_gej_set_infinity(&buckets[j]);
}
for (np = 0; np < no; ++np) {
int n = state->wnaf_na[np*n_wnaf + i];
struct secp256k1_pippenger_point_state point_state = state->ps[np];
secp256k1_ge tmp;
int idx;
if (i == 0) {
/* correct for wnaf skew */
int skew = point_state.skew_na;
if (skew) {
secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
secp256k1_gej_add_ge_var(&buckets[0], &buckets[0], &tmp, NULL);
}
}
if (n > 0) {
idx = (n - 1)/2;
secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &pt[point_state.input_pos], NULL);
} else if (n < 0) {
idx = -(n + 1)/2;
secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &tmp, NULL);
}
}
for(j = 0; j < bucket_window; j++) {
secp256k1_gej_double_var(r, r, NULL);
}
secp256k1_gej_set_infinity(&running_sum);
/* Accumulate the sum: bucket[0] + 3*bucket[1] + 5*bucket[2] + 7*bucket[3] + ...
* = bucket[0] + bucket[1] + bucket[2] + bucket[3] + ...
* + 2 * (bucket[1] + 2*bucket[2] + 3*bucket[3] + ...)
* using an intermediate running sum:
* running_sum = bucket[0] + bucket[1] + bucket[2] + ...
*
* The doubling is done implicitly by deferring the final window doubling (of 'r').
*/
for(j = ECMULT_TABLE_SIZE(bucket_window+2) - 1; j > 0; j--) {
secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[j], NULL);
secp256k1_gej_add_var(r, r, &running_sum, NULL);
}
secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[0], NULL);
secp256k1_gej_double_var(r, r, NULL);
secp256k1_gej_add_var(r, r, &running_sum, NULL);
}
return 1;
}
/**
* Returns optimal bucket_window (number of bits of a scalar represented by a
* set of buckets) for a given number of points.
*/
static int secp256k1_pippenger_bucket_window(size_t n) {
if (n <= 1) {
return 1;
} else if (n <= 4) {
return 2;
} else if (n <= 20) {
return 3;
} else if (n <= 57) {
return 4;
} else if (n <= 136) {
return 5;
} else if (n <= 235) {
return 6;
} else if (n <= 1260) {
return 7;
} else if (n <= 4420) {
return 9;
} else if (n <= 7880) {
return 10;
} else if (n <= 16050) {
return 11;
} else {
return PIPPENGER_MAX_BUCKET_WINDOW;
}
}
/**
* Returns the maximum optimal number of points for a bucket_window.
*/
static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) {
switch(bucket_window) {
case 1: return 1;
case 2: return 4;
case 3: return 20;
case 4: return 57;
case 5: return 136;
case 6: return 235;
case 7: return 1260;
case 8: return 1260;
case 9: return 4420;
case 10: return 7880;
case 11: return 16050;
case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
}
return 0;
}
SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2) {
secp256k1_scalar tmp = *s1;
secp256k1_scalar_split_lambda(s1, s2, &tmp);
secp256k1_ge_mul_lambda(p2, p1);
if (secp256k1_scalar_is_high(s1)) {
secp256k1_scalar_negate(s1, s1);
secp256k1_ge_neg(p1, p1);
}
if (secp256k1_scalar_is_high(s2)) {
secp256k1_scalar_negate(s2, s2);
secp256k1_ge_neg(p2, p2);
}
}
/**
* Returns the scratch size required for a given number of points (excluding
* base point G) without considering alignment.
*/
static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) {
size_t entries = 2*n_points + 2;
size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
return (sizeof(secp256k1_gej) << bucket_window) + sizeof(struct secp256k1_pippenger_state) + entries * entry_size;
}
static int secp256k1_ecmult_pippenger_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch);
/* Use 2(n+1) with the endomorphism, when calculating batch
* sizes. The reason for +1 is that we add the G scalar to the list of
* other scalars. */
size_t entries = 2*n_points + 2;
secp256k1_ge *points;
secp256k1_scalar *scalars;
secp256k1_gej *buckets;
struct secp256k1_pippenger_state *state_space;
size_t idx = 0;
size_t point_idx = 0;
int i, j;
int bucket_window;
secp256k1_gej_set_infinity(r);
if (inp_g_sc == NULL && n_points == 0) {
return 1;
}
bucket_window = secp256k1_pippenger_bucket_window(n_points);
/* We allocate PIPPENGER_SCRATCH_OBJECTS objects on the scratch space. If
* these allocations change, make sure to update the
* PIPPENGER_SCRATCH_OBJECTS constant and pippenger_scratch_size
* accordingly. */
points = (secp256k1_ge *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*points));
scalars = (secp256k1_scalar *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*scalars));
state_space = (struct secp256k1_pippenger_state *) secp256k1_scratch_alloc(error_callback, scratch, sizeof(*state_space));
if (points == NULL || scalars == NULL || state_space == NULL) {
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
state_space->ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*state_space->ps));
state_space->wnaf_na = (int *) secp256k1_scratch_alloc(error_callback, scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int));
buckets = (secp256k1_gej *) secp256k1_scratch_alloc(error_callback, scratch, ((size_t)1 << bucket_window) * sizeof(*buckets));
if (state_space->ps == NULL || state_space->wnaf_na == NULL || buckets == NULL) {
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
if (inp_g_sc != NULL) {
scalars[0] = *inp_g_sc;
points[0] = secp256k1_ge_const_g;
idx++;
secp256k1_ecmult_endo_split(&scalars[0], &scalars[1], &points[0], &points[1]);
idx++;
}
while (point_idx < n_points) {
if (!cb(&scalars[idx], &points[idx], point_idx + cb_offset, cbdata)) {
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
idx++;
secp256k1_ecmult_endo_split(&scalars[idx - 1], &scalars[idx], &points[idx - 1], &points[idx]);
idx++;
point_idx++;
}
secp256k1_ecmult_pippenger_wnaf(buckets, bucket_window, state_space, r, scalars, points, idx);
/* Clear data */
for(i = 0; (size_t)i < idx; i++) {
secp256k1_scalar_clear(&scalars[i]);
state_space->ps[i].skew_na = 0;
for(j = 0; j < WNAF_SIZE(bucket_window+1); j++) {
state_space->wnaf_na[i * WNAF_SIZE(bucket_window+1) + j] = 0;
}
}
for(i = 0; i < 1<<bucket_window; i++) {
secp256k1_gej_clear(&buckets[i]);
}
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 1;
}
/* Wrapper for secp256k1_ecmult_multi_func interface */
static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
return secp256k1_ecmult_pippenger_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0);
}
/**
* Returns the maximum number of points in addition to G that can be used with
* a given scratch space. The function ensures that fewer points may also be
* used.
*/
static size_t secp256k1_pippenger_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) {
size_t max_alloc = secp256k1_scratch_max_allocation(error_callback, scratch, PIPPENGER_SCRATCH_OBJECTS);
int bucket_window;
size_t res = 0;
for (bucket_window = 1; bucket_window <= PIPPENGER_MAX_BUCKET_WINDOW; bucket_window++) {
size_t n_points;
size_t max_points = secp256k1_pippenger_bucket_window_inv(bucket_window);
size_t space_for_points;
size_t space_overhead;
size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
entry_size = 2*entry_size;
space_overhead = (sizeof(secp256k1_gej) << bucket_window) + entry_size + sizeof(struct secp256k1_pippenger_state);
if (space_overhead > max_alloc) {
break;
}
space_for_points = max_alloc - space_overhead;
n_points = space_for_points/entry_size;
n_points = n_points > max_points ? max_points : n_points;
if (n_points > res) {
res = n_points;
}
if (n_points < max_points) {
/* A larger bucket_window may support even more points. But if we
* would choose that then the caller couldn't safely use any number
* smaller than what this function returns */
break;
}
}
return res;
}
/* Computes ecmult_multi by simply multiplying and adding each point. Does not
* require a scratch space */
static int secp256k1_ecmult_multi_simple_var(secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points) {
size_t point_idx;
secp256k1_scalar szero;
secp256k1_gej tmpj;
secp256k1_scalar_set_int(&szero, 0);
secp256k1_gej_set_infinity(r);
secp256k1_gej_set_infinity(&tmpj);
/* r = inp_g_sc*G */
secp256k1_ecmult(r, &tmpj, &szero, inp_g_sc);
for (point_idx = 0; point_idx < n_points; point_idx++) {
secp256k1_ge point;
secp256k1_gej pointj;
secp256k1_scalar scalar;
if (!cb(&scalar, &point, point_idx, cbdata)) {
return 0;
}
/* r += scalar*point */
secp256k1_gej_set_ge(&pointj, &point);
secp256k1_ecmult(&tmpj, &pointj, &scalar, NULL);
secp256k1_gej_add_var(r, r, &tmpj, NULL);
}
return 1;
}
/* Compute the number of batches and the batch size given the maximum batch size and the
* total number of points */
static int secp256k1_ecmult_multi_batch_size_helper(size_t *n_batches, size_t *n_batch_points, size_t max_n_batch_points, size_t n) {
if (max_n_batch_points == 0) {
return 0;
}
if (max_n_batch_points > ECMULT_MAX_POINTS_PER_BATCH) {
max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH;
}
if (n == 0) {
*n_batches = 0;
*n_batch_points = 0;
return 1;
}
/* Compute ceil(n/max_n_batch_points) and ceil(n/n_batches) */
*n_batches = 1 + (n - 1) / max_n_batch_points;
*n_batch_points = 1 + (n - 1) / *n_batches;
return 1;
}
typedef int (*secp256k1_ecmult_multi_func)(const secp256k1_callback* error_callback, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t);
static int secp256k1_ecmult_multi_var(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
size_t i;
int (*f)(const secp256k1_callback* error_callback, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t, size_t);
size_t n_batches;
size_t n_batch_points;
secp256k1_gej_set_infinity(r);
if (inp_g_sc == NULL && n == 0) {
return 1;
} else if (n == 0) {
secp256k1_scalar szero;
secp256k1_scalar_set_int(&szero, 0);
secp256k1_ecmult(r, r, &szero, inp_g_sc);
return 1;
}
if (scratch == NULL) {
return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
}
/* Compute the batch sizes for Pippenger's algorithm given a scratch space. If it's greater than
* a threshold use Pippenger's algorithm. Otherwise use Strauss' algorithm.
* As a first step check if there's enough space for Pippenger's algo (which requires less space
* than Strauss' algo) and if not, use the simple algorithm. */
if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_pippenger_max_points(error_callback, scratch), n)) {
return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
}
if (n_batch_points >= ECMULT_PIPPENGER_THRESHOLD) {
f = secp256k1_ecmult_pippenger_batch;
} else {
if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_strauss_max_points(error_callback, scratch), n)) {
return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
}
f = secp256k1_ecmult_strauss_batch;
}
for(i = 0; i < n_batches; i++) {
size_t nbp = n < n_batch_points ? n : n_batch_points;
size_t offset = n_batch_points*i;
secp256k1_gej tmp;
if (!f(error_callback, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) {
return 0;
}
secp256k1_gej_add_var(r, r, &tmp, NULL);
n -= nbp;
}
return 1;
}
#endif /* SECP256K1_ECMULT_IMPL_H */

339
ext/secp256k1/src/field.h Normal file
View File

@ -0,0 +1,339 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_FIELD_H
#define SECP256K1_FIELD_H
#include "util.h"
/* This file defines the generic interface for working with secp256k1_fe
* objects, which represent field elements (integers modulo 2^256 - 2^32 - 977).
*
* The actual definition of the secp256k1_fe type depends on the chosen field
* implementation; see the field_5x52.h and field_10x26.h files for details.
*
* All secp256k1_fe objects have implicit properties that determine what
* operations are permitted on it. These are purely a function of what
* secp256k1_fe_ operations are applied on it, generally (implicitly) fixed at
* compile time, and do not depend on the chosen field implementation. Despite
* that, what these properties actually entail for the field representation
* values depends on the chosen field implementation. These properties are:
* - magnitude: an integer in [0,32]
* - normalized: 0 or 1; normalized=1 implies magnitude <= 1.
*
* In VERIFY mode, they are materialized explicitly as fields in the struct,
* allowing run-time verification of these properties. In that case, the field
* implementation also provides a secp256k1_fe_verify routine to verify that
* these fields match the run-time value and perform internal consistency
* checks. */
#ifdef VERIFY
# define SECP256K1_FE_VERIFY_FIELDS \
int magnitude; \
int normalized;
#else
# define SECP256K1_FE_VERIFY_FIELDS
#endif
#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "field_10x26.h"
#else
#error "Please select wide multiplication implementation"
#endif
#ifdef VERIFY
/* Magnitude and normalized value for constants. */
#define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0) \
/* Magnitude is 0 for constant 0; 1 otherwise. */ \
, (((d7) | (d6) | (d5) | (d4) | (d3) | (d2) | (d1) | (d0)) != 0) \
/* Normalized is 1 unless sum(d_i<<(32*i) for i=0..7) exceeds field modulus. */ \
, (!(((d7) & (d6) & (d5) & (d4) & (d3) & (d2)) == 0xfffffffful && ((d1) == 0xfffffffful || ((d1) == 0xfffffffe && (d0 >= 0xfffffc2f)))))
#else
#define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
#endif
/** This expands to an initializer for a secp256k1_fe valued sum((i*32) * d_i, i=0..7) mod p.
*
* It has magnitude 1, unless d_i are all 0, in which case the magnitude is 0.
* It is normalized, unless sum(2^(i*32) * d_i, i=0..7) >= p.
*
* SECP256K1_FE_CONST_INNER is provided by the implementation.
*/
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) SECP256K1_FE_VERIFY_CONST((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) }
static const secp256k1_fe secp256k1_fe_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
static const secp256k1_fe secp256k1_const_beta = SECP256K1_FE_CONST(
0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
);
#ifndef VERIFY
/* In non-VERIFY mode, we #define the fe operations to be identical to their
* internal field implementation, to avoid the potential overhead of a
* function call (even though presumably inlinable). */
# define secp256k1_fe_normalize secp256k1_fe_impl_normalize
# define secp256k1_fe_normalize_weak secp256k1_fe_impl_normalize_weak
# define secp256k1_fe_normalize_var secp256k1_fe_impl_normalize_var
# define secp256k1_fe_normalizes_to_zero secp256k1_fe_impl_normalizes_to_zero
# define secp256k1_fe_normalizes_to_zero_var secp256k1_fe_impl_normalizes_to_zero_var
# define secp256k1_fe_set_int secp256k1_fe_impl_set_int
# define secp256k1_fe_clear secp256k1_fe_impl_clear
# define secp256k1_fe_is_zero secp256k1_fe_impl_is_zero
# define secp256k1_fe_is_odd secp256k1_fe_impl_is_odd
# define secp256k1_fe_cmp_var secp256k1_fe_impl_cmp_var
# define secp256k1_fe_set_b32_mod secp256k1_fe_impl_set_b32_mod
# define secp256k1_fe_set_b32_limit secp256k1_fe_impl_set_b32_limit
# define secp256k1_fe_get_b32 secp256k1_fe_impl_get_b32
# define secp256k1_fe_negate secp256k1_fe_impl_negate
# define secp256k1_fe_mul_int secp256k1_fe_impl_mul_int
# define secp256k1_fe_add secp256k1_fe_impl_add
# define secp256k1_fe_mul secp256k1_fe_impl_mul
# define secp256k1_fe_sqr secp256k1_fe_impl_sqr
# define secp256k1_fe_cmov secp256k1_fe_impl_cmov
# define secp256k1_fe_to_storage secp256k1_fe_impl_to_storage
# define secp256k1_fe_from_storage secp256k1_fe_impl_from_storage
# define secp256k1_fe_inv secp256k1_fe_impl_inv
# define secp256k1_fe_inv_var secp256k1_fe_impl_inv_var
# define secp256k1_fe_get_bounds secp256k1_fe_impl_get_bounds
# define secp256k1_fe_half secp256k1_fe_impl_half
# define secp256k1_fe_add_int secp256k1_fe_impl_add_int
# define secp256k1_fe_is_square_var secp256k1_fe_impl_is_square_var
#endif /* !defined(VERIFY) */
/** Normalize a field element.
*
* On input, r must be a valid field element.
* On output, r represents the same value but has normalized=1 and magnitude=1.
*/
static void secp256k1_fe_normalize(secp256k1_fe *r);
/** Give a field element magnitude 1.
*
* On input, r must be a valid field element.
* On output, r represents the same value but has magnitude=1. Normalized is unchanged.
*/
static void secp256k1_fe_normalize_weak(secp256k1_fe *r);
/** Normalize a field element, without constant-time guarantee.
*
* Identical in behavior to secp256k1_fe_normalize, but not constant time in r.
*/
static void secp256k1_fe_normalize_var(secp256k1_fe *r);
/** Determine whether r represents field element 0.
*
* On input, r must be a valid field element.
* Returns whether r = 0 (mod p).
*/
static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r);
/** Determine whether r represents field element 0, without constant-time guarantee.
*
* Identical in behavior to secp256k1_normalizes_to_zero, but not constant time in r.
*/
static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r);
/** Set a field element to an integer in range [0,0x7FFF].
*
* On input, r does not need to be initialized, a must be in [0,0x7FFF].
* On output, r represents value a, is normalized and has magnitude (a!=0).
*/
static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
/** Set a field element to 0.
*
* On input, a does not need to be initialized.
* On output, a represents 0, is normalized and has magnitude 0.
*/
static void secp256k1_fe_clear(secp256k1_fe *a);
/** Determine whether a represents field element 0.
*
* On input, a must be a valid normalized field element.
* Returns whether a = 0 (mod p).
*
* This behaves identical to secp256k1_normalizes_to_zero{,_var}, but requires
* normalized input (and is much faster).
*/
static int secp256k1_fe_is_zero(const secp256k1_fe *a);
/** Determine whether a (mod p) is odd.
*
* On input, a must be a valid normalized field element.
* Returns (int(a) mod p) & 1.
*/
static int secp256k1_fe_is_odd(const secp256k1_fe *a);
/** Determine whether two field elements are equal.
*
* On input, a and b must be valid field elements with magnitudes not exceeding
* 1 and 31, respectively.
* Returns a = b (mod p).
*/
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b);
/** Determine whether two field elements are equal, without constant-time guarantee.
*
* Identical in behavior to secp256k1_fe_equal, but not constant time in either a or b.
*/
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Compare the values represented by 2 field elements, without constant-time guarantee.
*
* On input, a and b must be valid normalized field elements.
* Returns 1 if a > b, -1 if a < b, and 0 if a = b (comparisons are done as integers
* in range 0..p-1).
*/
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Set a field element equal to a provided 32-byte big endian value, reducing it.
*
* On input, r does not need to be initalized. a must be a pointer to an initialized 32-byte array.
* On output, r = a (mod p). It will have magnitude 1, and not be normalized.
*/
static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a);
/** Set a field element equal to a provided 32-byte big endian value, checking for overflow.
*
* On input, r does not need to be initalized. a must be a pointer to an initialized 32-byte array.
* On output, r = a if (a < p), it will be normalized with magnitude 1, and 1 is returned.
* If a >= p, 0 is returned, and r will be made invalid (and must not be used without overwriting).
*/
static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a);
/** Convert a field element to 32-byte big endian byte array.
* On input, a must be a valid normalized field element, and r a pointer to a 32-byte array.
* On output, r = a (mod p).
*/
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a);
/** Negate a field element.
*
* On input, r does not need to be initialized. a must be a valid field element with
* magnitude not exceeding m. m must be an integer in [0,31].
* Performs {r = -a}.
* On output, r will not be normalized, and will have magnitude m+1.
*/
static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m);
/** Add a small integer to a field element.
*
* Performs {r += a}. The magnitude of r increases by 1, and normalized is cleared.
* a must be in range [0,0xFFFF].
*/
static void secp256k1_fe_add_int(secp256k1_fe *r, int a);
/** Multiply a field element with a small integer.
*
* On input, r must be a valid field element. a must be an integer in [0,32].
* The magnitude of r times a must not exceed 32.
* Performs {r *= a}.
* On output, r's magnitude is multiplied by a, and r will not be normalized.
*/
static void secp256k1_fe_mul_int(secp256k1_fe *r, int a);
/** Increment a field element by another.
*
* On input, r and a must be valid field elements, not necessarily normalized.
* The sum of their magnitudes must not exceed 32.
* Performs {r += a}.
* On output, r will not be normalized, and will have magnitude incremented by a's.
*/
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a);
/** Multiply two field elements.
*
* On input, a and b must be valid field elements; r does not need to be initialized.
* r and a may point to the same object, but neither can be equal to b. The magnitudes
* of a and b must not exceed 8.
* Performs {r = a * b}
* On output, r will have magnitude 1, but won't be normalized.
*/
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
/** Square a field element.
*
* On input, a must be a valid field element; r does not need to be initialized. The magnitude
* of a must not exceed 8.
* Performs {r = a**2}
* On output, r will have magnitude 1, but won't be normalized.
*/
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
/** Compute a square root of a field element.
*
* On input, a must be a valid field element with magnitude<=8; r need not be initialized.
* Performs {r = sqrt(a)} or {r = sqrt(-a)}, whichever exists. The resulting value
* represented by r will be a square itself. Variables r and a must not point to the same object.
* On output, r will have magnitude 1 but will not be normalized.
*/
static int secp256k1_fe_sqrt(secp256k1_fe * SECP256K1_RESTRICT r, const secp256k1_fe * SECP256K1_RESTRICT a);
/** Compute the modular inverse of a field element.
*
* On input, a must be a valid field element; r need not be initialized.
* Performs {r = a**(p-2)} (which maps 0 to 0, and every other element to its
* inverse).
* On output, r will have magnitude (a.magnitude != 0) and be normalized.
*/
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
/** Compute the modular inverse of a field element, without constant-time guarantee.
*
* Behaves identically to secp256k1_fe_inv, but is not constant-time in a.
*/
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
/** Convert a field element to secp256k1_fe_storage.
*
* On input, a must be a valid normalized field element.
* Performs {r = a}.
*/
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
/** Convert a field element back from secp256k1_fe_storage.
*
* On input, r need not be initialized.
* Performs {r = a}.
* On output, r will be normalized and will have magnitude 1.
*/
static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag);
/** Conditionally move a field element in constant time.
*
* On input, both r and a must be valid field elements. Flag must be 0 or 1.
* Performs {r = flag ? a : r}.
* On output, r's magnitude and normalized will equal a's in case of flag=1, unchanged otherwise.
*/
static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
/** Halve the value of a field element modulo the field prime in constant-time.
*
* On input, r must be a valid field element.
* On output, r will be normalized and have magnitude floor(m/2) + 1 where m is
* the magnitude of r on input.
*/
static void secp256k1_fe_half(secp256k1_fe *r);
/** Sets r to a field element with magnitude m, normalized if (and only if) m==0.
* The value is chosen so that it is likely to trigger edge cases related to
* internal overflows. */
static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m);
/** Determine whether a is a square (modulo p).
*
* On input, a must be a valid field element.
*/
static int secp256k1_fe_is_square_var(const secp256k1_fe *a);
/** Check invariants on a field element (no-op unless VERIFY is enabled). */
static void secp256k1_fe_verify(const secp256k1_fe *a);
#endif /* SECP256K1_FIELD_H */

View File

@ -0,0 +1,57 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_FIELD_REPR_H
#define SECP256K1_FIELD_REPR_H
#include <stdint.h>
/** This field implementation represents the value as 10 uint32_t limbs in base
* 2^26. */
typedef struct {
/* A field element f represents the sum(i=0..9, f.n[i] << (i*26)) mod p,
* where p is the field modulus, 2^256 - 2^32 - 977.
*
* The individual limbs f.n[i] can exceed 2^26; the field's magnitude roughly
* corresponds to how much excess is allowed. The value
* sum(i=0..9, f.n[i] << (i*26)) may exceed p, unless the field element is
* normalized. */
uint32_t n[10];
/*
* Magnitude m requires:
* n[i] <= 2 * m * (2^26 - 1) for i=0..8
* n[9] <= 2 * m * (2^22 - 1)
*
* Normalized requires:
* n[i] <= (2^26 - 1) for i=0..8
* sum(i=0..9, n[i] << (i*26)) < p
* (together these imply n[9] <= 2^22 - 1)
*/
SECP256K1_FE_VERIFY_FIELDS
} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
(d0) & 0x3FFFFFFUL, \
(((uint32_t)d0) >> 26) | (((uint32_t)(d1) & 0xFFFFFUL) << 6), \
(((uint32_t)d1) >> 20) | (((uint32_t)(d2) & 0x3FFFUL) << 12), \
(((uint32_t)d2) >> 14) | (((uint32_t)(d3) & 0xFFUL) << 18), \
(((uint32_t)d3) >> 8) | (((uint32_t)(d4) & 0x3UL) << 24), \
(((uint32_t)d4) >> 2) & 0x3FFFFFFUL, \
(((uint32_t)d4) >> 28) | (((uint32_t)(d5) & 0x3FFFFFUL) << 4), \
(((uint32_t)d5) >> 22) | (((uint32_t)(d6) & 0xFFFFUL) << 10), \
(((uint32_t)d6) >> 16) | (((uint32_t)(d7) & 0x3FFUL) << 16), \
(((uint32_t)d7) >> 10) \
}
typedef struct {
uint32_t n[8];
} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }}
#define SECP256K1_FE_STORAGE_CONST_GET(d) d.n[7], d.n[6], d.n[5], d.n[4],d.n[3], d.n[2], d.n[1], d.n[0]
#endif /* SECP256K1_FIELD_REPR_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,62 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_FIELD_REPR_H
#define SECP256K1_FIELD_REPR_H
#include <stdint.h>
/** This field implementation represents the value as 5 uint64_t limbs in base
* 2^52. */
typedef struct {
/* A field element f represents the sum(i=0..4, f.n[i] << (i*52)) mod p,
* where p is the field modulus, 2^256 - 2^32 - 977.
*
* The individual limbs f.n[i] can exceed 2^52; the field's magnitude roughly
* corresponds to how much excess is allowed. The value
* sum(i=0..4, f.n[i] << (i*52)) may exceed p, unless the field element is
* normalized. */
uint64_t n[5];
/*
* Magnitude m requires:
* n[i] <= 2 * m * (2^52 - 1) for i=0..3
* n[4] <= 2 * m * (2^48 - 1)
*
* Normalized requires:
* n[i] <= (2^52 - 1) for i=0..3
* sum(i=0..4, n[i] << (i*52)) < p
* (together these imply n[4] <= 2^48 - 1)
*/
SECP256K1_FE_VERIFY_FIELDS
} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
(d0) | (((uint64_t)(d1) & 0xFFFFFUL) << 32), \
((uint64_t)(d1) >> 20) | (((uint64_t)(d2)) << 12) | (((uint64_t)(d3) & 0xFFUL) << 44), \
((uint64_t)(d3) >> 8) | (((uint64_t)(d4) & 0xFFFFFFFUL) << 24), \
((uint64_t)(d4) >> 28) | (((uint64_t)(d5)) << 4) | (((uint64_t)(d6) & 0xFFFFUL) << 36), \
((uint64_t)(d6) >> 16) | (((uint64_t)(d7)) << 16) \
}
typedef struct {
uint64_t n[4];
} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ \
(d0) | (((uint64_t)(d1)) << 32), \
(d2) | (((uint64_t)(d3)) << 32), \
(d4) | (((uint64_t)(d5)) << 32), \
(d6) | (((uint64_t)(d7)) << 32) \
}}
#define SECP256K1_FE_STORAGE_CONST_GET(d) \
(uint32_t)(d.n[3] >> 32), (uint32_t)d.n[3], \
(uint32_t)(d.n[2] >> 32), (uint32_t)d.n[2], \
(uint32_t)(d.n[1] >> 32), (uint32_t)d.n[1], \
(uint32_t)(d.n[0] >> 32), (uint32_t)d.n[0]
#endif /* SECP256K1_FIELD_REPR_H */

View File

@ -0,0 +1,504 @@
/***********************************************************************
* Copyright (c) 2013-2014 Diederik Huys, Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
/**
* Changelog:
* - March 2013, Diederik Huys: original version
* - November 2014, Pieter Wuille: updated to use Peter Dettman's parallel multiplication algorithm
* - December 2014, Pieter Wuille: converted from YASM to GCC inline assembly
*/
#ifndef SECP256K1_FIELD_INNER5X52_IMPL_H
#define SECP256K1_FIELD_INNER5X52_IMPL_H
#include "util.h"
SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
/**
* Registers: rdx:rax = multiplication accumulator
* r9:r8 = c
* r15:rcx = d
* r10-r14 = a0-a4
* rbx = b
* rdi = r
* rsi = a / t?
*/
uint64_t tmp1, tmp2, tmp3;
__asm__ __volatile__(
"movq 0(%%rsi),%%r10\n"
"movq 8(%%rsi),%%r11\n"
"movq 16(%%rsi),%%r12\n"
"movq 24(%%rsi),%%r13\n"
"movq 32(%%rsi),%%r14\n"
/* d += a3 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r13\n"
"movq %%rax,%%rcx\n"
"movq %%rdx,%%r15\n"
/* d += a2 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d = a0 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c = a4 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r14\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += (c & M) * R */
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* t3 (tmp1) = d & M */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
"movq %%rsi,%q1\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* d += a4 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a0 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += c * R */
"movq %%r8,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* t4 = d & M (%%rsi) */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* tx = t4 >> 48 (tmp3) */
"movq %%rsi,%%rax\n"
"shrq $48,%%rax\n"
"movq %%rax,%q3\n"
/* t4 &= (M >> 4) (tmp2) */
"movq $0xffffffffffff,%%rax\n"
"andq %%rax,%%rsi\n"
"movq %%rsi,%q2\n"
/* c = a0 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r10\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += a4 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* u0 = d & M (%%rsi) */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* u0 = (u0 << 4) | tx (%%rsi) */
"shlq $4,%%rsi\n"
"movq %q3,%%rax\n"
"orq %%rax,%%rsi\n"
/* c += u0 * (R >> 4) */
"movq $0x1000003d1,%%rax\n"
"mulq %%rsi\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[0] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,0(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a1 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a0 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a4 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c += (d & M) * R */
"movq %%rcx,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* r[1] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,8(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a2 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a1 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a0 * b2 (last use of %%r10 = a0) */
"movq 16(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* fetch t3 (%%r10, overwrites a0), t4 (%%rsi) */
"movq %q2,%%rsi\n"
"movq %q1,%%r10\n"
/* d += a4 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c += (d & M) * R */
"movq %%rcx,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 (%%rcx only) */
"shrdq $52,%%r15,%%rcx\n"
/* r[2] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,16(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += t3 */
"addq %%r10,%%r8\n"
/* c += d * R */
"movq %%rcx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[3] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,24(%%rdi)\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* c += t4 (%%r8 only) */
"addq %%rsi,%%r8\n"
/* r[4] = c */
"movq %%r8,32(%%rdi)\n"
: "+S"(a), "=&m"(tmp1), "=&m"(tmp2), "=&m"(tmp3)
: "b"(b), "D"(r)
: "%rax", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
);
}
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
/**
* Registers: rdx:rax = multiplication accumulator
* r9:r8 = c
* rcx:rbx = d
* r10-r14 = a0-a4
* r15 = M (0xfffffffffffff)
* rdi = r
* rsi = a / t?
*/
uint64_t tmp1, tmp2, tmp3;
__asm__ __volatile__(
"movq 0(%%rsi),%%r10\n"
"movq 8(%%rsi),%%r11\n"
"movq 16(%%rsi),%%r12\n"
"movq 24(%%rsi),%%r13\n"
"movq 32(%%rsi),%%r14\n"
"movq $0xfffffffffffff,%%r15\n"
/* d = (a0*2) * a3 */
"leaq (%%r10,%%r10,1),%%rax\n"
"mulq %%r13\n"
"movq %%rax,%%rbx\n"
"movq %%rdx,%%rcx\n"
/* d += (a1*2) * a2 */
"leaq (%%r11,%%r11,1),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c = a4 * a4 */
"movq %%r14,%%rax\n"
"mulq %%r14\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += (c & M) * R */
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* t3 (tmp1) = d & M */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
"movq %%rsi,%q1\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* a4 *= 2 */
"addq %%r14,%%r14\n"
/* d += a0 * a4 */
"movq %%r10,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d+= (a1*2) * a3 */
"leaq (%%r11,%%r11,1),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += a2 * a2 */
"movq %%r12,%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += c * R */
"movq %%r8,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* t4 = d & M (%%rsi) */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* tx = t4 >> 48 (tmp3) */
"movq %%rsi,%%rax\n"
"shrq $48,%%rax\n"
"movq %%rax,%q3\n"
/* t4 &= (M >> 4) (tmp2) */
"movq $0xffffffffffff,%%rax\n"
"andq %%rax,%%rsi\n"
"movq %%rsi,%q2\n"
/* c = a0 * a0 */
"movq %%r10,%%rax\n"
"mulq %%r10\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += a1 * a4 */
"movq %%r11,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += (a2*2) * a3 */
"leaq (%%r12,%%r12,1),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* u0 = d & M (%%rsi) */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* u0 = (u0 << 4) | tx (%%rsi) */
"shlq $4,%%rsi\n"
"movq %q3,%%rax\n"
"orq %%rax,%%rsi\n"
/* c += u0 * (R >> 4) */
"movq $0x1000003d1,%%rax\n"
"mulq %%rsi\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[0] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,0(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* a0 *= 2 */
"addq %%r10,%%r10\n"
/* c += a0 * a1 */
"movq %%r10,%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a2 * a4 */
"movq %%r12,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += a3 * a3 */
"movq %%r13,%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c += (d & M) * R */
"movq %%rbx,%%rax\n"
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* r[1] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,8(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a0 * a2 (last use of %%r10) */
"movq %%r10,%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* fetch t3 (%%r10, overwrites a0),t4 (%%rsi) */
"movq %q2,%%rsi\n"
"movq %q1,%%r10\n"
/* c += a1 * a1 */
"movq %%r11,%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a3 * a4 */
"movq %%r13,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c += (d & M) * R */
"movq %%rbx,%%rax\n"
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 (%%rbx only) */
"shrdq $52,%%rcx,%%rbx\n"
/* r[2] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,16(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += t3 */
"addq %%r10,%%r8\n"
/* c += d * R */
"movq %%rbx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[3] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,24(%%rdi)\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* c += t4 (%%r8 only) */
"addq %%rsi,%%r8\n"
/* r[4] = c */
"movq %%r8,32(%%rdi)\n"
: "+S"(a), "=&m"(tmp1), "=&m"(tmp2), "=&m"(tmp3)
: "D"(r)
: "%rax", "%rbx", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
);
}
#endif /* SECP256K1_FIELD_INNER5X52_IMPL_H */

View File

@ -0,0 +1,533 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_FIELD_REPR_IMPL_H
#define SECP256K1_FIELD_REPR_IMPL_H
#include "checkmem.h"
#include "util.h"
#include "field.h"
#include "modinv64_impl.h"
#if defined(USE_ASM_X86_64)
#include "field_5x52_asm_impl.h"
#else
#include "field_5x52_int128_impl.h"
#endif
#ifdef VERIFY
static void secp256k1_fe_impl_verify(const secp256k1_fe *a) {
const uint64_t *d = a->n;
int m = a->normalized ? 1 : 2 * a->magnitude;
/* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
VERIFY_CHECK(d[0] <= 0xFFFFFFFFFFFFFULL * m);
VERIFY_CHECK(d[1] <= 0xFFFFFFFFFFFFFULL * m);
VERIFY_CHECK(d[2] <= 0xFFFFFFFFFFFFFULL * m);
VERIFY_CHECK(d[3] <= 0xFFFFFFFFFFFFFULL * m);
VERIFY_CHECK(d[4] <= 0x0FFFFFFFFFFFFULL * m);
if (a->normalized) {
if ((d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
VERIFY_CHECK(d[0] < 0xFFFFEFFFFFC2FULL);
}
}
}
#endif
static void secp256k1_fe_impl_get_bounds(secp256k1_fe *r, int m) {
r->n[0] = 0xFFFFFFFFFFFFFULL * 2 * m;
r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * m;
r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * m;
r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * m;
r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * m;
}
static void secp256k1_fe_impl_normalize(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t m;
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
& (t0 >= 0xFFFFEFFFFFC2FULL));
/* Apply the final reduction (for constant-time behaviour, we do it always) */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
VERIFY_CHECK(t4 >> 48 == x);
/* Mask off the possible multiple of 2^256 from the final reduction */
t4 &= 0x0FFFFFFFFFFFFULL;
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
}
static void secp256k1_fe_impl_normalize_weak(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
}
static void secp256k1_fe_impl_normalize_var(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t m;
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
& (t0 >= 0xFFFFEFFFFFC2FULL));
if (x) {
t0 += 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
VERIFY_CHECK(t4 >> 48 == x);
/* Mask off the possible multiple of 2^256 from the final reduction */
t4 &= 0x0FFFFFFFFFFFFULL;
}
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
}
static int secp256k1_fe_impl_normalizes_to_zero(const secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
uint64_t z0, z1;
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}
static int secp256k1_fe_impl_normalizes_to_zero_var(const secp256k1_fe *r) {
uint64_t t0, t1, t2, t3, t4;
uint64_t z0, z1;
uint64_t x;
t0 = r->n[0];
t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
x = t4 >> 48;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
z0 = t0 & 0xFFFFFFFFFFFFFULL;
z1 = z0 ^ 0x1000003D0ULL;
/* Fast return path should catch the majority of cases */
if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
return 0;
}
t1 = r->n[1];
t2 = r->n[2];
t3 = r->n[3];
t4 &= 0x0FFFFFFFFFFFFULL;
t1 += (t0 >> 52);
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}
SECP256K1_INLINE static void secp256k1_fe_impl_set_int(secp256k1_fe *r, int a) {
r->n[0] = a;
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
}
SECP256K1_INLINE static int secp256k1_fe_impl_is_zero(const secp256k1_fe *a) {
const uint64_t *t = a->n;
return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
}
SECP256K1_INLINE static int secp256k1_fe_impl_is_odd(const secp256k1_fe *a) {
return a->n[0] & 1;
}
SECP256K1_INLINE static void secp256k1_fe_impl_clear(secp256k1_fe *a) {
int i;
for (i=0; i<5; i++) {
a->n[i] = 0;
}
}
static int secp256k1_fe_impl_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
int i;
for (i = 4; i >= 0; i--) {
if (a->n[i] > b->n[i]) {
return 1;
}
if (a->n[i] < b->n[i]) {
return -1;
}
}
return 0;
}
static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a) {
r->n[0] = (uint64_t)a[31]
| ((uint64_t)a[30] << 8)
| ((uint64_t)a[29] << 16)
| ((uint64_t)a[28] << 24)
| ((uint64_t)a[27] << 32)
| ((uint64_t)a[26] << 40)
| ((uint64_t)(a[25] & 0xF) << 48);
r->n[1] = (uint64_t)((a[25] >> 4) & 0xF)
| ((uint64_t)a[24] << 4)
| ((uint64_t)a[23] << 12)
| ((uint64_t)a[22] << 20)
| ((uint64_t)a[21] << 28)
| ((uint64_t)a[20] << 36)
| ((uint64_t)a[19] << 44);
r->n[2] = (uint64_t)a[18]
| ((uint64_t)a[17] << 8)
| ((uint64_t)a[16] << 16)
| ((uint64_t)a[15] << 24)
| ((uint64_t)a[14] << 32)
| ((uint64_t)a[13] << 40)
| ((uint64_t)(a[12] & 0xF) << 48);
r->n[3] = (uint64_t)((a[12] >> 4) & 0xF)
| ((uint64_t)a[11] << 4)
| ((uint64_t)a[10] << 12)
| ((uint64_t)a[9] << 20)
| ((uint64_t)a[8] << 28)
| ((uint64_t)a[7] << 36)
| ((uint64_t)a[6] << 44);
r->n[4] = (uint64_t)a[5]
| ((uint64_t)a[4] << 8)
| ((uint64_t)a[3] << 16)
| ((uint64_t)a[2] << 24)
| ((uint64_t)a[1] << 32)
| ((uint64_t)a[0] << 40);
}
static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a) {
secp256k1_fe_impl_set_b32_mod(r, a);
return !((r->n[4] == 0x0FFFFFFFFFFFFULL) & ((r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL) & (r->n[0] >= 0xFFFFEFFFFFC2FULL));
}
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a) {
r[0] = (a->n[4] >> 40) & 0xFF;
r[1] = (a->n[4] >> 32) & 0xFF;
r[2] = (a->n[4] >> 24) & 0xFF;
r[3] = (a->n[4] >> 16) & 0xFF;
r[4] = (a->n[4] >> 8) & 0xFF;
r[5] = a->n[4] & 0xFF;
r[6] = (a->n[3] >> 44) & 0xFF;
r[7] = (a->n[3] >> 36) & 0xFF;
r[8] = (a->n[3] >> 28) & 0xFF;
r[9] = (a->n[3] >> 20) & 0xFF;
r[10] = (a->n[3] >> 12) & 0xFF;
r[11] = (a->n[3] >> 4) & 0xFF;
r[12] = ((a->n[2] >> 48) & 0xF) | ((a->n[3] & 0xF) << 4);
r[13] = (a->n[2] >> 40) & 0xFF;
r[14] = (a->n[2] >> 32) & 0xFF;
r[15] = (a->n[2] >> 24) & 0xFF;
r[16] = (a->n[2] >> 16) & 0xFF;
r[17] = (a->n[2] >> 8) & 0xFF;
r[18] = a->n[2] & 0xFF;
r[19] = (a->n[1] >> 44) & 0xFF;
r[20] = (a->n[1] >> 36) & 0xFF;
r[21] = (a->n[1] >> 28) & 0xFF;
r[22] = (a->n[1] >> 20) & 0xFF;
r[23] = (a->n[1] >> 12) & 0xFF;
r[24] = (a->n[1] >> 4) & 0xFF;
r[25] = ((a->n[0] >> 48) & 0xF) | ((a->n[1] & 0xF) << 4);
r[26] = (a->n[0] >> 40) & 0xFF;
r[27] = (a->n[0] >> 32) & 0xFF;
r[28] = (a->n[0] >> 24) & 0xFF;
r[29] = (a->n[0] >> 16) & 0xFF;
r[30] = (a->n[0] >> 8) & 0xFF;
r[31] = a->n[0] & 0xFF;
}
SECP256K1_INLINE static void secp256k1_fe_impl_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
/* For all legal values of m (0..31), the following properties hold: */
VERIFY_CHECK(0xFFFFEFFFFFC2FULL * 2 * (m + 1) >= 0xFFFFFFFFFFFFFULL * 2 * m);
VERIFY_CHECK(0xFFFFFFFFFFFFFULL * 2 * (m + 1) >= 0xFFFFFFFFFFFFFULL * 2 * m);
VERIFY_CHECK(0x0FFFFFFFFFFFFULL * 2 * (m + 1) >= 0x0FFFFFFFFFFFFULL * 2 * m);
/* Due to the properties above, the left hand in the subtractions below is never less than
* the right hand. */
r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
}
SECP256K1_INLINE static void secp256k1_fe_impl_mul_int(secp256k1_fe *r, int a) {
r->n[0] *= a;
r->n[1] *= a;
r->n[2] *= a;
r->n[3] *= a;
r->n[4] *= a;
}
SECP256K1_INLINE static void secp256k1_fe_impl_add_int(secp256k1_fe *r, int a) {
r->n[0] += a;
}
SECP256K1_INLINE static void secp256k1_fe_impl_add(secp256k1_fe *r, const secp256k1_fe *a) {
r->n[0] += a->n[0];
r->n[1] += a->n[1];
r->n[2] += a->n[2];
r->n[3] += a->n[3];
r->n[4] += a->n[4];
}
SECP256K1_INLINE static void secp256k1_fe_impl_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
secp256k1_fe_mul_inner(r->n, a->n, b->n);
}
SECP256K1_INLINE static void secp256k1_fe_impl_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe_sqr_inner(r->n, a->n);
}
SECP256K1_INLINE static void secp256k1_fe_impl_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
uint64_t mask0, mask1;
volatile int vflag = flag;
SECP256K1_CHECKMEM_CHECK_VERIFY(r->n, sizeof(r->n));
mask0 = vflag + ~((uint64_t)0);
mask1 = ~mask0;
r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
}
static SECP256K1_INLINE void secp256k1_fe_impl_half(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
uint64_t one = (uint64_t)1;
uint64_t mask = -(t0 & one) >> 12;
/* Bounds analysis (over the rationals).
*
* Let m = r->magnitude
* C = 0xFFFFFFFFFFFFFULL * 2
* D = 0x0FFFFFFFFFFFFULL * 2
*
* Initial bounds: t0..t3 <= C * m
* t4 <= D * m
*/
t0 += 0xFFFFEFFFFFC2FULL & mask;
t1 += mask;
t2 += mask;
t3 += mask;
t4 += mask >> 4;
VERIFY_CHECK((t0 & one) == 0);
/* t0..t3: added <= C/2
* t4: added <= D/2
*
* Current bounds: t0..t3 <= C * (m + 1/2)
* t4 <= D * (m + 1/2)
*/
r->n[0] = (t0 >> 1) + ((t1 & one) << 51);
r->n[1] = (t1 >> 1) + ((t2 & one) << 51);
r->n[2] = (t2 >> 1) + ((t3 & one) << 51);
r->n[3] = (t3 >> 1) + ((t4 & one) << 51);
r->n[4] = (t4 >> 1);
/* t0..t3: shifted right and added <= C/4 + 1/2
* t4: shifted right
*
* Current bounds: t0..t3 <= C * (m/2 + 1/2)
* t4 <= D * (m/2 + 1/4)
*
* Therefore the output magnitude (M) has to be set such that:
* t0..t3: C * M >= C * (m/2 + 1/2)
* t4: D * M >= D * (m/2 + 1/4)
*
* It suffices for all limbs that, for any input magnitude m:
* M >= m/2 + 1/2
*
* and since we want the smallest such integer value for M:
* M == floor(m/2) + 1
*/
}
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
uint64_t mask0, mask1;
volatile int vflag = flag;
SECP256K1_CHECKMEM_CHECK_VERIFY(r->n, sizeof(r->n));
mask0 = vflag + ~((uint64_t)0);
mask1 = ~mask0;
r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
}
static void secp256k1_fe_impl_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
r->n[0] = a->n[0] | a->n[1] << 52;
r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
}
static SECP256K1_INLINE void secp256k1_fe_impl_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
r->n[4] = a->n[3] >> 16;
}
static void secp256k1_fe_from_signed62(secp256k1_fe *r, const secp256k1_modinv64_signed62 *a) {
const uint64_t M52 = UINT64_MAX >> 12;
const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4];
/* The output from secp256k1_modinv64{_var} should be normalized to range [0,modulus), and
* have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4).
*/
VERIFY_CHECK(a0 >> 62 == 0);
VERIFY_CHECK(a1 >> 62 == 0);
VERIFY_CHECK(a2 >> 62 == 0);
VERIFY_CHECK(a3 >> 62 == 0);
VERIFY_CHECK(a4 >> 8 == 0);
r->n[0] = a0 & M52;
r->n[1] = (a0 >> 52 | a1 << 10) & M52;
r->n[2] = (a1 >> 42 | a2 << 20) & M52;
r->n[3] = (a2 >> 32 | a3 << 30) & M52;
r->n[4] = (a3 >> 22 | a4 << 40);
}
static void secp256k1_fe_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_fe *a) {
const uint64_t M62 = UINT64_MAX >> 2;
const uint64_t a0 = a->n[0], a1 = a->n[1], a2 = a->n[2], a3 = a->n[3], a4 = a->n[4];
r->v[0] = (a0 | a1 << 52) & M62;
r->v[1] = (a1 >> 10 | a2 << 42) & M62;
r->v[2] = (a2 >> 20 | a3 << 32) & M62;
r->v[3] = (a3 >> 30 | a4 << 22) & M62;
r->v[4] = a4 >> 40;
}
static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_fe = {
{{-0x1000003D1LL, 0, 0, 0, 256}},
0x27C7F6E22DDACACFLL
};
static void secp256k1_fe_impl_inv(secp256k1_fe *r, const secp256k1_fe *x) {
secp256k1_fe tmp = *x;
secp256k1_modinv64_signed62 s;
secp256k1_fe_normalize(&tmp);
secp256k1_fe_to_signed62(&s, &tmp);
secp256k1_modinv64(&s, &secp256k1_const_modinfo_fe);
secp256k1_fe_from_signed62(r, &s);
}
static void secp256k1_fe_impl_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
secp256k1_fe tmp = *x;
secp256k1_modinv64_signed62 s;
secp256k1_fe_normalize_var(&tmp);
secp256k1_fe_to_signed62(&s, &tmp);
secp256k1_modinv64_var(&s, &secp256k1_const_modinfo_fe);
secp256k1_fe_from_signed62(r, &s);
}
static int secp256k1_fe_impl_is_square_var(const secp256k1_fe *x) {
secp256k1_fe tmp;
secp256k1_modinv64_signed62 s;
int jac, ret;
tmp = *x;
secp256k1_fe_normalize_var(&tmp);
/* secp256k1_jacobi64_maybe_var cannot deal with input 0. */
if (secp256k1_fe_is_zero(&tmp)) return 1;
secp256k1_fe_to_signed62(&s, &tmp);
jac = secp256k1_jacobi64_maybe_var(&s, &secp256k1_const_modinfo_fe);
if (jac == 0) {
/* secp256k1_jacobi64_maybe_var failed to compute the Jacobi symbol. Fall back
* to computing a square root. This should be extremely rare with random
* input (except in VERIFY mode, where a lower iteration count is used). */
secp256k1_fe dummy;
ret = secp256k1_fe_sqrt(&dummy, &tmp);
} else {
ret = jac >= 0;
}
return ret;
}
#endif /* SECP256K1_FIELD_REPR_IMPL_H */

View File

@ -0,0 +1,279 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_FIELD_INNER5X52_IMPL_H
#define SECP256K1_FIELD_INNER5X52_IMPL_H
#include <stdint.h>
#include "int128.h"
#include "util.h"
#ifdef VERIFY
#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0)
#define VERIFY_BITS_128(x, n) VERIFY_CHECK(secp256k1_u128_check_bits((x), (n)))
#else
#define VERIFY_BITS(x, n) do { } while(0)
#define VERIFY_BITS_128(x, n) do { } while(0)
#endif
SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
secp256k1_uint128 c, d;
uint64_t t3, t4, tx, u0;
uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4];
const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL;
VERIFY_BITS(a[0], 56);
VERIFY_BITS(a[1], 56);
VERIFY_BITS(a[2], 56);
VERIFY_BITS(a[3], 56);
VERIFY_BITS(a[4], 52);
VERIFY_BITS(b[0], 56);
VERIFY_BITS(b[1], 56);
VERIFY_BITS(b[2], 56);
VERIFY_BITS(b[3], 56);
VERIFY_BITS(b[4], 52);
VERIFY_CHECK(r != b);
VERIFY_CHECK(a != b);
/* [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
* for 0 <= x <= 4, px is a shorthand for sum(a[i]*b[x-i], i=0..x).
* for 4 <= x <= 8, px is a shorthand for sum(a[i]*b[x-i], i=(x-4)..4)
* Note that [x 0 0 0 0 0] = [x*R].
*/
secp256k1_u128_mul(&d, a0, b[3]);
secp256k1_u128_accum_mul(&d, a1, b[2]);
secp256k1_u128_accum_mul(&d, a2, b[1]);
secp256k1_u128_accum_mul(&d, a3, b[0]);
VERIFY_BITS_128(&d, 114);
/* [d 0 0 0] = [p3 0 0 0] */
secp256k1_u128_mul(&c, a4, b[4]);
VERIFY_BITS_128(&c, 112);
/* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
secp256k1_u128_accum_mul(&d, R, secp256k1_u128_to_u64(&c)); secp256k1_u128_rshift(&c, 64);
VERIFY_BITS_128(&d, 115);
VERIFY_BITS_128(&c, 48);
/* [(c<<12) 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
t3 = secp256k1_u128_to_u64(&d) & M; secp256k1_u128_rshift(&d, 52);
VERIFY_BITS(t3, 52);
VERIFY_BITS_128(&d, 63);
/* [(c<<12) 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
secp256k1_u128_accum_mul(&d, a0, b[4]);
secp256k1_u128_accum_mul(&d, a1, b[3]);
secp256k1_u128_accum_mul(&d, a2, b[2]);
secp256k1_u128_accum_mul(&d, a3, b[1]);
secp256k1_u128_accum_mul(&d, a4, b[0]);
VERIFY_BITS_128(&d, 115);
/* [(c<<12) 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
secp256k1_u128_accum_mul(&d, R << 12, secp256k1_u128_to_u64(&c));
VERIFY_BITS_128(&d, 116);
/* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
t4 = secp256k1_u128_to_u64(&d) & M; secp256k1_u128_rshift(&d, 52);
VERIFY_BITS(t4, 52);
VERIFY_BITS_128(&d, 64);
/* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
tx = (t4 >> 48); t4 &= (M >> 4);
VERIFY_BITS(tx, 4);
VERIFY_BITS(t4, 48);
/* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
secp256k1_u128_mul(&c, a0, b[0]);
VERIFY_BITS_128(&c, 112);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */
secp256k1_u128_accum_mul(&d, a1, b[4]);
secp256k1_u128_accum_mul(&d, a2, b[3]);
secp256k1_u128_accum_mul(&d, a3, b[2]);
secp256k1_u128_accum_mul(&d, a4, b[1]);
VERIFY_BITS_128(&d, 115);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = secp256k1_u128_to_u64(&d) & M; secp256k1_u128_rshift(&d, 52);
VERIFY_BITS(u0, 52);
VERIFY_BITS_128(&d, 63);
/* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
/* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = (u0 << 4) | tx;
VERIFY_BITS(u0, 56);
/* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
secp256k1_u128_accum_mul(&c, u0, R >> 4);
VERIFY_BITS_128(&c, 115);
/* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
r[0] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[0], 52);
VERIFY_BITS_128(&c, 61);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */
secp256k1_u128_accum_mul(&c, a0, b[1]);
secp256k1_u128_accum_mul(&c, a1, b[0]);
VERIFY_BITS_128(&c, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */
secp256k1_u128_accum_mul(&d, a2, b[4]);
secp256k1_u128_accum_mul(&d, a3, b[3]);
secp256k1_u128_accum_mul(&d, a4, b[2]);
VERIFY_BITS_128(&d, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
secp256k1_u128_accum_mul(&c, secp256k1_u128_to_u64(&d) & M, R); secp256k1_u128_rshift(&d, 52);
VERIFY_BITS_128(&c, 115);
VERIFY_BITS_128(&d, 62);
/* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
r[1] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[1], 52);
VERIFY_BITS_128(&c, 63);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
secp256k1_u128_accum_mul(&c, a0, b[2]);
secp256k1_u128_accum_mul(&c, a1, b[1]);
secp256k1_u128_accum_mul(&c, a2, b[0]);
VERIFY_BITS_128(&c, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */
secp256k1_u128_accum_mul(&d, a3, b[4]);
secp256k1_u128_accum_mul(&d, a4, b[3]);
VERIFY_BITS_128(&d, 114);
/* [d 0 0 t4 t3 c t1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
secp256k1_u128_accum_mul(&c, R, secp256k1_u128_to_u64(&d)); secp256k1_u128_rshift(&d, 64);
VERIFY_BITS_128(&c, 115);
VERIFY_BITS_128(&d, 50);
/* [(d<<12) 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[2] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[2], 52);
VERIFY_BITS_128(&c, 63);
/* [(d<<12) 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
secp256k1_u128_accum_mul(&c, R << 12, secp256k1_u128_to_u64(&d));
secp256k1_u128_accum_u64(&c, t3);
VERIFY_BITS_128(&c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[3], 52);
VERIFY_BITS_128(&c, 48);
/* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[4] = secp256k1_u128_to_u64(&c) + t4;
VERIFY_BITS(r[4], 49);
/* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
}
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
secp256k1_uint128 c, d;
uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4];
int64_t t3, t4, tx, u0;
const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL;
VERIFY_BITS(a[0], 56);
VERIFY_BITS(a[1], 56);
VERIFY_BITS(a[2], 56);
VERIFY_BITS(a[3], 56);
VERIFY_BITS(a[4], 52);
/** [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
* px is a shorthand for sum(a[i]*a[x-i], i=0..x).
* Note that [x 0 0 0 0 0] = [x*R].
*/
secp256k1_u128_mul(&d, a0*2, a3);
secp256k1_u128_accum_mul(&d, a1*2, a2);
VERIFY_BITS_128(&d, 114);
/* [d 0 0 0] = [p3 0 0 0] */
secp256k1_u128_mul(&c, a4, a4);
VERIFY_BITS_128(&c, 112);
/* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
secp256k1_u128_accum_mul(&d, R, secp256k1_u128_to_u64(&c)); secp256k1_u128_rshift(&c, 64);
VERIFY_BITS_128(&d, 115);
VERIFY_BITS_128(&c, 48);
/* [(c<<12) 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
t3 = secp256k1_u128_to_u64(&d) & M; secp256k1_u128_rshift(&d, 52);
VERIFY_BITS(t3, 52);
VERIFY_BITS_128(&d, 63);
/* [(c<<12) 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
a4 *= 2;
secp256k1_u128_accum_mul(&d, a0, a4);
secp256k1_u128_accum_mul(&d, a1*2, a3);
secp256k1_u128_accum_mul(&d, a2, a2);
VERIFY_BITS_128(&d, 115);
/* [(c<<12) 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
secp256k1_u128_accum_mul(&d, R << 12, secp256k1_u128_to_u64(&c));
VERIFY_BITS_128(&d, 116);
/* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
t4 = secp256k1_u128_to_u64(&d) & M; secp256k1_u128_rshift(&d, 52);
VERIFY_BITS(t4, 52);
VERIFY_BITS_128(&d, 64);
/* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
tx = (t4 >> 48); t4 &= (M >> 4);
VERIFY_BITS(tx, 4);
VERIFY_BITS(t4, 48);
/* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
secp256k1_u128_mul(&c, a0, a0);
VERIFY_BITS_128(&c, 112);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */
secp256k1_u128_accum_mul(&d, a1, a4);
secp256k1_u128_accum_mul(&d, a2*2, a3);
VERIFY_BITS_128(&d, 114);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = secp256k1_u128_to_u64(&d) & M; secp256k1_u128_rshift(&d, 52);
VERIFY_BITS(u0, 52);
VERIFY_BITS_128(&d, 62);
/* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
/* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = (u0 << 4) | tx;
VERIFY_BITS(u0, 56);
/* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
secp256k1_u128_accum_mul(&c, u0, R >> 4);
VERIFY_BITS_128(&c, 113);
/* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
r[0] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[0], 52);
VERIFY_BITS_128(&c, 61);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */
a0 *= 2;
secp256k1_u128_accum_mul(&c, a0, a1);
VERIFY_BITS_128(&c, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */
secp256k1_u128_accum_mul(&d, a2, a4);
secp256k1_u128_accum_mul(&d, a3, a3);
VERIFY_BITS_128(&d, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
secp256k1_u128_accum_mul(&c, secp256k1_u128_to_u64(&d) & M, R); secp256k1_u128_rshift(&d, 52);
VERIFY_BITS_128(&c, 115);
VERIFY_BITS_128(&d, 62);
/* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
r[1] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[1], 52);
VERIFY_BITS_128(&c, 63);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
secp256k1_u128_accum_mul(&c, a0, a2);
secp256k1_u128_accum_mul(&c, a1, a1);
VERIFY_BITS_128(&c, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */
secp256k1_u128_accum_mul(&d, a3, a4);
VERIFY_BITS_128(&d, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
secp256k1_u128_accum_mul(&c, R, secp256k1_u128_to_u64(&d)); secp256k1_u128_rshift(&d, 64);
VERIFY_BITS_128(&c, 115);
VERIFY_BITS_128(&d, 50);
/* [(d<<12) 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[2] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[2], 52);
VERIFY_BITS_128(&c, 63);
/* [(d<<12) 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
secp256k1_u128_accum_mul(&c, R << 12, secp256k1_u128_to_u64(&d));
secp256k1_u128_accum_u64(&c, t3);
VERIFY_BITS_128(&c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[3], 52);
VERIFY_BITS_128(&c, 48);
/* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[4] = secp256k1_u128_to_u64(&c) + t4;
VERIFY_BITS(r[4], 49);
/* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
}
#endif /* SECP256K1_FIELD_INNER5X52_IMPL_H */

View File

@ -0,0 +1,432 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_FIELD_IMPL_H
#define SECP256K1_FIELD_IMPL_H
#include "field.h"
#include "util.h"
#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52_impl.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "field_10x26_impl.h"
#else
#error "Please select wide multiplication implementation"
#endif
SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
#ifdef VERIFY
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
VERIFY_CHECK(a->magnitude <= 1);
VERIFY_CHECK(b->magnitude <= 31);
#endif
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero(&na);
}
SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
#ifdef VERIFY
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
VERIFY_CHECK(a->magnitude <= 1);
VERIFY_CHECK(b->magnitude <= 31);
#endif
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero_var(&na);
}
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
/** Given that p is congruent to 3 mod 4, we can compute the square root of
* a mod p as the (p+1)/4'th power of a.
*
* As (p+1)/4 is an even number, it will have the same result for a and for
* (-a). Only one of these two numbers actually has a square root however,
* so we test at the end by squaring and comparing to the input.
* Also because (p+1)/4 is an even number, the computed square root is
* itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
*/
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j, ret;
#ifdef VERIFY
VERIFY_CHECK(r != a);
secp256k1_fe_verify(a);
VERIFY_CHECK(a->magnitude <= 8);
#endif
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
* { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
secp256k1_fe_sqr(&x2, a);
secp256k1_fe_mul(&x2, &x2, a);
secp256k1_fe_sqr(&x3, &x2);
secp256k1_fe_mul(&x3, &x3, a);
x6 = x3;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x6, &x6);
}
secp256k1_fe_mul(&x6, &x6, &x3);
x9 = x6;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x9, &x9);
}
secp256k1_fe_mul(&x9, &x9, &x3);
x11 = x9;
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&x11, &x11);
}
secp256k1_fe_mul(&x11, &x11, &x2);
x22 = x11;
for (j=0; j<11; j++) {
secp256k1_fe_sqr(&x22, &x22);
}
secp256k1_fe_mul(&x22, &x22, &x11);
x44 = x22;
for (j=0; j<22; j++) {
secp256k1_fe_sqr(&x44, &x44);
}
secp256k1_fe_mul(&x44, &x44, &x22);
x88 = x44;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x88, &x88);
}
secp256k1_fe_mul(&x88, &x88, &x44);
x176 = x88;
for (j=0; j<88; j++) {
secp256k1_fe_sqr(&x176, &x176);
}
secp256k1_fe_mul(&x176, &x176, &x88);
x220 = x176;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x220, &x220);
}
secp256k1_fe_mul(&x220, &x220, &x44);
x223 = x220;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x223, &x223);
}
secp256k1_fe_mul(&x223, &x223, &x3);
/* The final result is then assembled using a sliding window over the blocks. */
t1 = x223;
for (j=0; j<23; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x22);
for (j=0; j<6; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x2);
secp256k1_fe_sqr(&t1, &t1);
secp256k1_fe_sqr(r, &t1);
/* Check that a square root was actually calculated */
secp256k1_fe_sqr(&t1, r);
ret = secp256k1_fe_equal(&t1, a);
#ifdef VERIFY
if (!ret) {
secp256k1_fe_negate(&t1, &t1, 1);
secp256k1_fe_normalize_var(&t1);
VERIFY_CHECK(secp256k1_fe_equal_var(&t1, a));
}
#endif
return ret;
}
#ifndef VERIFY
static void secp256k1_fe_verify(const secp256k1_fe *a) { (void)a; }
#else
static void secp256k1_fe_impl_verify(const secp256k1_fe *a);
static void secp256k1_fe_verify(const secp256k1_fe *a) {
/* Magnitude between 0 and 32. */
VERIFY_CHECK((a->magnitude >= 0) && (a->magnitude <= 32));
/* Normalized is 0 or 1. */
VERIFY_CHECK((a->normalized == 0) || (a->normalized == 1));
/* If normalized, magnitude must be 0 or 1. */
if (a->normalized) VERIFY_CHECK(a->magnitude <= 1);
/* Invoke implementation-specific checks. */
secp256k1_fe_impl_verify(a);
}
static void secp256k1_fe_impl_normalize(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_normalize(secp256k1_fe *r) {
secp256k1_fe_verify(r);
secp256k1_fe_impl_normalize(r);
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
}
static void secp256k1_fe_impl_normalize_weak(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
secp256k1_fe_verify(r);
secp256k1_fe_impl_normalize_weak(r);
r->magnitude = 1;
secp256k1_fe_verify(r);
}
static void secp256k1_fe_impl_normalize_var(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
secp256k1_fe_verify(r);
secp256k1_fe_impl_normalize_var(r);
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
}
static int secp256k1_fe_impl_normalizes_to_zero(const secp256k1_fe *r);
SECP256K1_INLINE static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) {
secp256k1_fe_verify(r);
return secp256k1_fe_impl_normalizes_to_zero(r);
}
static int secp256k1_fe_impl_normalizes_to_zero_var(const secp256k1_fe *r);
SECP256K1_INLINE static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) {
secp256k1_fe_verify(r);
return secp256k1_fe_impl_normalizes_to_zero_var(r);
}
static void secp256k1_fe_impl_set_int(secp256k1_fe *r, int a);
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
VERIFY_CHECK(0 <= a && a <= 0x7FFF);
secp256k1_fe_impl_set_int(r, a);
r->magnitude = (a != 0);
r->normalized = 1;
secp256k1_fe_verify(r);
}
static void secp256k1_fe_impl_add_int(secp256k1_fe *r, int a);
SECP256K1_INLINE static void secp256k1_fe_add_int(secp256k1_fe *r, int a) {
VERIFY_CHECK(0 <= a && a <= 0x7FFF);
secp256k1_fe_verify(r);
secp256k1_fe_impl_add_int(r, a);
r->magnitude += 1;
r->normalized = 0;
secp256k1_fe_verify(r);
}
static void secp256k1_fe_impl_clear(secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
a->magnitude = 0;
a->normalized = 1;
secp256k1_fe_impl_clear(a);
secp256k1_fe_verify(a);
}
static int secp256k1_fe_impl_is_zero(const secp256k1_fe *a);
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
secp256k1_fe_verify(a);
VERIFY_CHECK(a->normalized);
return secp256k1_fe_impl_is_zero(a);
}
static int secp256k1_fe_impl_is_odd(const secp256k1_fe *a);
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
secp256k1_fe_verify(a);
VERIFY_CHECK(a->normalized);
return secp256k1_fe_impl_is_odd(a);
}
static int secp256k1_fe_impl_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
SECP256K1_INLINE static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
VERIFY_CHECK(a->normalized);
VERIFY_CHECK(b->normalized);
return secp256k1_fe_impl_cmp_var(a, b);
}
static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a);
SECP256K1_INLINE static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a) {
secp256k1_fe_impl_set_b32_mod(r, a);
r->magnitude = 1;
r->normalized = 0;
secp256k1_fe_verify(r);
}
static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a);
SECP256K1_INLINE static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a) {
if (secp256k1_fe_impl_set_b32_limit(r, a)) {
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
return 1;
} else {
/* Mark the output field element as invalid. */
r->magnitude = -1;
return 0;
}
}
static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
secp256k1_fe_verify(a);
VERIFY_CHECK(a->normalized);
secp256k1_fe_impl_get_b32(r, a);
}
static void secp256k1_fe_impl_negate(secp256k1_fe *r, const secp256k1_fe *a, int m);
SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
secp256k1_fe_verify(a);
VERIFY_CHECK(m >= 0 && m <= 31);
VERIFY_CHECK(a->magnitude <= m);
secp256k1_fe_impl_negate(r, a, m);
r->magnitude = m + 1;
r->normalized = 0;
secp256k1_fe_verify(r);
}
static void secp256k1_fe_impl_mul_int(secp256k1_fe *r, int a);
SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
secp256k1_fe_verify(r);
VERIFY_CHECK(a >= 0 && a <= 32);
VERIFY_CHECK(a*r->magnitude <= 32);
secp256k1_fe_impl_mul_int(r, a);
r->magnitude *= a;
r->normalized = 0;
secp256k1_fe_verify(r);
}
static void secp256k1_fe_impl_add(secp256k1_fe *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe_verify(r);
secp256k1_fe_verify(a);
VERIFY_CHECK(r->magnitude + a->magnitude <= 32);
secp256k1_fe_impl_add(r, a);
r->magnitude += a->magnitude;
r->normalized = 0;
secp256k1_fe_verify(r);
}
static void secp256k1_fe_impl_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
SECP256K1_INLINE static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
VERIFY_CHECK(a->magnitude <= 8);
VERIFY_CHECK(b->magnitude <= 8);
VERIFY_CHECK(r != b);
VERIFY_CHECK(a != b);
secp256k1_fe_impl_mul(r, a, b);
r->magnitude = 1;
r->normalized = 0;
secp256k1_fe_verify(r);
}
static void secp256k1_fe_impl_sqr(secp256k1_fe *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe_verify(a);
VERIFY_CHECK(a->magnitude <= 8);
secp256k1_fe_impl_sqr(r, a);
r->magnitude = 1;
r->normalized = 0;
secp256k1_fe_verify(r);
}
static void secp256k1_fe_impl_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
SECP256K1_INLINE static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
VERIFY_CHECK(flag == 0 || flag == 1);
secp256k1_fe_verify(a);
secp256k1_fe_verify(r);
secp256k1_fe_impl_cmov(r, a, flag);
if (flag) {
r->magnitude = a->magnitude;
r->normalized = a->normalized;
}
secp256k1_fe_verify(r);
}
static void secp256k1_fe_impl_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
secp256k1_fe_verify(a);
VERIFY_CHECK(a->normalized);
secp256k1_fe_impl_to_storage(r, a);
}
static void secp256k1_fe_impl_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
SECP256K1_INLINE static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
secp256k1_fe_impl_from_storage(r, a);
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
}
static void secp256k1_fe_impl_inv(secp256k1_fe *r, const secp256k1_fe *x);
SECP256K1_INLINE static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) {
int input_is_zero = secp256k1_fe_normalizes_to_zero(x);
secp256k1_fe_verify(x);
secp256k1_fe_impl_inv(r, x);
r->magnitude = x->magnitude > 0;
r->normalized = 1;
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == input_is_zero);
secp256k1_fe_verify(r);
}
static void secp256k1_fe_impl_inv_var(secp256k1_fe *r, const secp256k1_fe *x);
SECP256K1_INLINE static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
int input_is_zero = secp256k1_fe_normalizes_to_zero(x);
secp256k1_fe_verify(x);
secp256k1_fe_impl_inv_var(r, x);
r->magnitude = x->magnitude > 0;
r->normalized = 1;
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == input_is_zero);
secp256k1_fe_verify(r);
}
static int secp256k1_fe_impl_is_square_var(const secp256k1_fe *x);
SECP256K1_INLINE static int secp256k1_fe_is_square_var(const secp256k1_fe *x) {
int ret;
secp256k1_fe tmp = *x, sqrt;
secp256k1_fe_verify(x);
ret = secp256k1_fe_impl_is_square_var(x);
secp256k1_fe_normalize_weak(&tmp);
VERIFY_CHECK(ret == secp256k1_fe_sqrt(&sqrt, &tmp));
return ret;
}
static void secp256k1_fe_impl_get_bounds(secp256k1_fe* r, int m);
SECP256K1_INLINE static void secp256k1_fe_get_bounds(secp256k1_fe* r, int m) {
VERIFY_CHECK(m >= 0);
VERIFY_CHECK(m <= 32);
secp256k1_fe_impl_get_bounds(r, m);
r->magnitude = m;
r->normalized = (m == 0);
secp256k1_fe_verify(r);
}
static void secp256k1_fe_impl_half(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_half(secp256k1_fe *r) {
secp256k1_fe_verify(r);
VERIFY_CHECK(r->magnitude < 32);
secp256k1_fe_impl_half(r);
r->magnitude = (r->magnitude >> 1) + 1;
r->normalized = 0;
secp256k1_fe_verify(r);
}
#endif /* defined(VERIFY) */
#endif /* SECP256K1_FIELD_IMPL_H */

173
ext/secp256k1/src/group.h Normal file
View File

@ -0,0 +1,173 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_GROUP_H
#define SECP256K1_GROUP_H
#include "field.h"
/** A group element in affine coordinates on the secp256k1 curve,
* or occasionally on an isomorphic curve of the form y^2 = x^3 + 7*t^6.
* Note: For exhaustive test mode, secp256k1 is replaced by a small subgroup of a different curve.
*/
typedef struct {
secp256k1_fe x;
secp256k1_fe y;
int infinity; /* whether this represents the point at infinity */
} secp256k1_ge;
#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
/** A group element of the secp256k1 curve, in jacobian coordinates.
* Note: For exhastive test mode, secp256k1 is replaced by a small subgroup of a different curve.
*/
typedef struct {
secp256k1_fe x; /* actual X: x/z^2 */
secp256k1_fe y; /* actual Y: y/z^3 */
secp256k1_fe z;
int infinity; /* whether this represents the point at infinity */
} secp256k1_gej;
#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
typedef struct {
secp256k1_fe_storage x;
secp256k1_fe_storage y;
} secp256k1_ge_storage;
#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
/** Set a group element equal to the point with given X and Y coordinates */
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
* for Y. Return value indicates whether the result is valid. */
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
/** Check whether a group element is the point at infinity. */
static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
/** Check whether a group element is valid (i.e., on the curve). */
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a);
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
/** Set a group element equal to another which is given in jacobian coordinates. Constant time. */
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
/** Set a group element equal to another which is given in jacobian coordinates. */
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a);
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len);
/** Bring a batch of inputs to the same global z "denominator", based on ratios between
* (omitted) z coordinates of adjacent elements.
*
* Although the elements a[i] are _ge rather than _gej, they actually represent elements
* in Jacobian coordinates with their z coordinates omitted.
*
* Using the notation z(b) to represent the omitted z coordinate of b, the array zr of
* z coordinate ratios must satisfy zr[i] == z(a[i]) / z(a[i-1]) for 0 < 'i' < len.
* The zr[0] value is unused.
*
* This function adjusts the coordinates of 'a' in place so that for all 'i', z(a[i]) == z(a[len-1]).
* In other words, the initial value of z(a[len-1]) becomes the global z "denominator". Only the
* a[i].x and a[i].y coordinates are explicitly modified; the adjustment of the omitted z coordinate is
* implicit.
*
* The coordinates of the final element a[len-1] are not changed.
*/
static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr);
/** Set a group element (affine) equal to the point at infinity. */
static void secp256k1_ge_set_infinity(secp256k1_ge *r);
/** Set a group element (jacobian) equal to the point at infinity. */
static void secp256k1_gej_set_infinity(secp256k1_gej *r);
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
/** Check two group elements (jacobian) for equality in variable time. */
static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b);
/** Compare the X coordinate of a group element (jacobian). */
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
/** Check whether a group element is the point at infinity. */
static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
/** Set r equal to the double of a. Constant time. */
static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a);
/** Set r equal to the double of a. If rzr is not-NULL this sets *rzr such that r->z == a->z * *rzr (where infinity means an implicit z = 0). */
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b);
/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
guarantee, and b is allowed to be infinity. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a);
/** Clear a secp256k1_gej to prevent leaking sensitive information. */
static void secp256k1_gej_clear(secp256k1_gej *r);
/** Clear a secp256k1_ge to prevent leaking sensitive information. */
static void secp256k1_ge_clear(secp256k1_ge *r);
/** Convert a group element to the storage type. */
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a);
/** Convert a group element back from the storage type. */
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
static void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag);
/** Rescale a jacobian point by b which must be non-zero. Constant-time. */
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
/** Determine if a point (which is assumed to be on the curve) is in the correct (sub)group of the curve.
*
* In normal mode, the used group is secp256k1, which has cofactor=1 meaning that every point on the curve is in the
* group, and this function returns always true.
*
* When compiling in exhaustive test mode, a slightly different curve equation is used, leading to a group with a
* (very) small subgroup, and that subgroup is what is used for all cryptographic operations. In that mode, this
* function checks whether a point that is on the curve is in fact also in that subgroup.
*/
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge);
/** Check invariants on an affine group element (no-op unless VERIFY is enabled). */
static void secp256k1_ge_verify(const secp256k1_ge *a);
/** Check invariants on a Jacobian group element (no-op unless VERIFY is enabled). */
static void secp256k1_gej_verify(const secp256k1_gej *a);
#endif /* SECP256K1_GROUP_H */

View File

@ -0,0 +1,826 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_GROUP_IMPL_H
#define SECP256K1_GROUP_IMPL_H
#include "field.h"
#include "group.h"
#include "util.h"
/* Begin of section generated by sage/gen_exhaustive_groups.sage. */
#define SECP256K1_G_ORDER_7 SECP256K1_GE_CONST(\
0x66625d13, 0x317ffe44, 0x63d32cff, 0x1ca02b9b,\
0xe5c6d070, 0x50b4b05e, 0x81cc30db, 0xf5166f0a,\
0x1e60e897, 0xa7c00c7c, 0x2df53eb6, 0x98274ff4,\
0x64252f42, 0x8ca44e17, 0x3b25418c, 0xff4ab0cf\
)
#define SECP256K1_G_ORDER_13 SECP256K1_GE_CONST(\
0xa2482ff8, 0x4bf34edf, 0xa51262fd, 0xe57921db,\
0xe0dd2cb7, 0xa5914790, 0xbc71631f, 0xc09704fb,\
0x942536cb, 0xa3e49492, 0x3a701cc3, 0xee3e443f,\
0xdf182aa9, 0x15b8aa6a, 0x166d3b19, 0xba84b045\
)
#define SECP256K1_G_ORDER_199 SECP256K1_GE_CONST(\
0x7fb07b5c, 0xd07c3bda, 0x553902e2, 0x7a87ea2c,\
0x35108a7f, 0x051f41e5, 0xb76abad5, 0x1f2703ad,\
0x0a251539, 0x5b4c4438, 0x952a634f, 0xac10dd4d,\
0x6d6f4745, 0x98990c27, 0x3a4f3116, 0xd32ff969\
)
/** Generator for secp256k1, value 'g' defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
*/
#define SECP256K1_G SECP256K1_GE_CONST(\
0x79be667e, 0xf9dcbbac, 0x55a06295, 0xce870b07,\
0x029bfcdb, 0x2dce28d9, 0x59f2815b, 0x16f81798,\
0x483ada77, 0x26a3c465, 0x5da4fbfc, 0x0e1108a8,\
0xfd17b448, 0xa6855419, 0x9c47d08f, 0xfb10d4b8\
)
/* These exhaustive group test orders and generators are chosen such that:
* - The field size is equal to that of secp256k1, so field code is the same.
* - The curve equation is of the form y^2=x^3+B for some small constant B.
* - The subgroup has a generator 2*P, where P.x is as small as possible.
* - The subgroup has size less than 1000 to permit exhaustive testing.
* - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y).
*/
#if defined(EXHAUSTIVE_TEST_ORDER)
# if EXHAUSTIVE_TEST_ORDER == 7
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_7;
#define SECP256K1_B 6
# elif EXHAUSTIVE_TEST_ORDER == 13
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_13;
#define SECP256K1_B 2
# elif EXHAUSTIVE_TEST_ORDER == 199
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_199;
#define SECP256K1_B 4
# else
# error No known generator for the specified exhaustive test group order.
# endif
#else
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G;
#define SECP256K1_B 7
#endif
/* End of section generated by sage/gen_exhaustive_groups.sage. */
static void secp256k1_ge_verify(const secp256k1_ge *a) {
#ifdef VERIFY
secp256k1_fe_verify(&a->x);
secp256k1_fe_verify(&a->y);
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
#endif
(void)a;
}
static void secp256k1_gej_verify(const secp256k1_gej *a) {
#ifdef VERIFY
secp256k1_fe_verify(&a->x);
secp256k1_fe_verify(&a->y);
secp256k1_fe_verify(&a->z);
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
#endif
(void)a;
}
/* Set r to the affine coordinates of Jacobian point (a.x, a.y, 1/zi). */
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
secp256k1_fe zi2;
secp256k1_fe zi3;
secp256k1_gej_verify(a);
secp256k1_fe_verify(zi);
VERIFY_CHECK(!a->infinity);
secp256k1_fe_sqr(&zi2, zi);
secp256k1_fe_mul(&zi3, &zi2, zi);
secp256k1_fe_mul(&r->x, &a->x, &zi2);
secp256k1_fe_mul(&r->y, &a->y, &zi3);
r->infinity = a->infinity;
secp256k1_ge_verify(r);
}
/* Set r to the affine coordinates of Jacobian point (a.x, a.y, 1/zi). */
static void secp256k1_ge_set_ge_zinv(secp256k1_ge *r, const secp256k1_ge *a, const secp256k1_fe *zi) {
secp256k1_fe zi2;
secp256k1_fe zi3;
secp256k1_ge_verify(a);
secp256k1_fe_verify(zi);
VERIFY_CHECK(!a->infinity);
secp256k1_fe_sqr(&zi2, zi);
secp256k1_fe_mul(&zi3, &zi2, zi);
secp256k1_fe_mul(&r->x, &a->x, &zi2);
secp256k1_fe_mul(&r->y, &a->y, &zi3);
r->infinity = a->infinity;
secp256k1_ge_verify(r);
}
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
secp256k1_fe_verify(x);
secp256k1_fe_verify(y);
r->infinity = 0;
r->x = *x;
r->y = *y;
secp256k1_ge_verify(r);
}
static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
secp256k1_ge_verify(a);
return a->infinity;
}
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
secp256k1_ge_verify(a);
*r = *a;
secp256k1_fe_normalize_weak(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1);
secp256k1_ge_verify(r);
}
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
secp256k1_fe z2, z3;
secp256k1_gej_verify(a);
r->infinity = a->infinity;
secp256k1_fe_inv(&a->z, &a->z);
secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_mul(&z3, &a->z, &z2);
secp256k1_fe_mul(&a->x, &a->x, &z2);
secp256k1_fe_mul(&a->y, &a->y, &z3);
secp256k1_fe_set_int(&a->z, 1);
r->x = a->x;
r->y = a->y;
secp256k1_ge_verify(r);
}
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
secp256k1_fe z2, z3;
secp256k1_gej_verify(a);
if (secp256k1_gej_is_infinity(a)) {
secp256k1_ge_set_infinity(r);
return;
}
r->infinity = 0;
secp256k1_fe_inv_var(&a->z, &a->z);
secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_mul(&z3, &a->z, &z2);
secp256k1_fe_mul(&a->x, &a->x, &z2);
secp256k1_fe_mul(&a->y, &a->y, &z3);
secp256k1_fe_set_int(&a->z, 1);
secp256k1_ge_set_xy(r, &a->x, &a->y);
secp256k1_ge_verify(r);
}
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) {
secp256k1_fe u;
size_t i;
size_t last_i = SIZE_MAX;
for (i = 0; i < len; i++) {
secp256k1_gej_verify(&a[i]);
if (a[i].infinity) {
secp256k1_ge_set_infinity(&r[i]);
} else {
/* Use destination's x coordinates as scratch space */
if (last_i == SIZE_MAX) {
r[i].x = a[i].z;
} else {
secp256k1_fe_mul(&r[i].x, &r[last_i].x, &a[i].z);
}
last_i = i;
}
}
if (last_i == SIZE_MAX) {
return;
}
secp256k1_fe_inv_var(&u, &r[last_i].x);
i = last_i;
while (i > 0) {
i--;
if (!a[i].infinity) {
secp256k1_fe_mul(&r[last_i].x, &r[i].x, &u);
secp256k1_fe_mul(&u, &u, &a[last_i].z);
last_i = i;
}
}
VERIFY_CHECK(!a[last_i].infinity);
r[last_i].x = u;
for (i = 0; i < len; i++) {
if (!a[i].infinity) {
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x);
}
secp256k1_ge_verify(&r[i]);
}
}
static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr) {
size_t i = len - 1;
secp256k1_fe zs;
if (len > 0) {
/* Verify inputs a[len-1] and zr[len-1]. */
secp256k1_ge_verify(&a[i]);
secp256k1_fe_verify(&zr[i]);
/* Ensure all y values are in weak normal form for fast negation of points */
secp256k1_fe_normalize_weak(&a[i].y);
zs = zr[i];
/* Work our way backwards, using the z-ratios to scale the x/y values. */
while (i > 0) {
/* Verify all inputs a[i] and zr[i]. */
secp256k1_fe_verify(&zr[i]);
secp256k1_ge_verify(&a[i]);
if (i != len - 1) {
secp256k1_fe_mul(&zs, &zs, &zr[i]);
}
i--;
secp256k1_ge_set_ge_zinv(&a[i], &a[i], &zs);
/* Verify the output a[i]. */
secp256k1_ge_verify(&a[i]);
}
}
}
static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
r->infinity = 1;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
secp256k1_fe_clear(&r->z);
secp256k1_gej_verify(r);
}
static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
r->infinity = 1;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
secp256k1_ge_verify(r);
}
static void secp256k1_gej_clear(secp256k1_gej *r) {
r->infinity = 0;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
secp256k1_fe_clear(&r->z);
}
static void secp256k1_ge_clear(secp256k1_ge *r) {
r->infinity = 0;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
}
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
secp256k1_fe x2, x3;
int ret;
secp256k1_fe_verify(x);
r->x = *x;
secp256k1_fe_sqr(&x2, x);
secp256k1_fe_mul(&x3, x, &x2);
r->infinity = 0;
secp256k1_fe_add_int(&x3, SECP256K1_B);
ret = secp256k1_fe_sqrt(&r->y, &x3);
secp256k1_fe_normalize_var(&r->y);
if (secp256k1_fe_is_odd(&r->y) != odd) {
secp256k1_fe_negate(&r->y, &r->y, 1);
}
secp256k1_ge_verify(r);
return ret;
}
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
secp256k1_ge_verify(a);
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
secp256k1_fe_set_int(&r->z, 1);
secp256k1_gej_verify(r);
}
static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b) {
secp256k1_gej tmp;
secp256k1_gej_verify(b);
secp256k1_gej_verify(a);
secp256k1_gej_neg(&tmp, a);
secp256k1_gej_add_var(&tmp, &tmp, b, NULL);
return secp256k1_gej_is_infinity(&tmp);
}
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
secp256k1_fe r, r2;
secp256k1_fe_verify(x);
secp256k1_gej_verify(a);
VERIFY_CHECK(!a->infinity);
secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
r2 = a->x; secp256k1_fe_normalize_weak(&r2);
return secp256k1_fe_equal_var(&r, &r2);
}
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
secp256k1_gej_verify(a);
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
r->z = a->z;
secp256k1_fe_normalize_weak(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1);
secp256k1_gej_verify(r);
}
static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
secp256k1_gej_verify(a);
return a->infinity;
}
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
secp256k1_fe y2, x3;
secp256k1_ge_verify(a);
if (a->infinity) {
return 0;
}
/* y^2 = x^3 + 7 */
secp256k1_fe_sqr(&y2, &a->y);
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_add_int(&x3, SECP256K1_B);
secp256k1_fe_normalize_weak(&x3);
return secp256k1_fe_equal_var(&y2, &x3);
}
static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a) {
/* Operations: 3 mul, 4 sqr, 8 add/half/mul_int/negate */
secp256k1_fe l, s, t;
secp256k1_gej_verify(a);
r->infinity = a->infinity;
/* Formula used:
* L = (3/2) * X1^2
* S = Y1^2
* T = -X1*S
* X3 = L^2 + 2*T
* Y3 = -(L*(X3 + T) + S^2)
* Z3 = Y1*Z1
*/
secp256k1_fe_mul(&r->z, &a->z, &a->y); /* Z3 = Y1*Z1 (1) */
secp256k1_fe_sqr(&s, &a->y); /* S = Y1^2 (1) */
secp256k1_fe_sqr(&l, &a->x); /* L = X1^2 (1) */
secp256k1_fe_mul_int(&l, 3); /* L = 3*X1^2 (3) */
secp256k1_fe_half(&l); /* L = 3/2*X1^2 (2) */
secp256k1_fe_negate(&t, &s, 1); /* T = -S (2) */
secp256k1_fe_mul(&t, &t, &a->x); /* T = -X1*S (1) */
secp256k1_fe_sqr(&r->x, &l); /* X3 = L^2 (1) */
secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + T (2) */
secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + 2*T (3) */
secp256k1_fe_sqr(&s, &s); /* S' = S^2 (1) */
secp256k1_fe_add(&t, &r->x); /* T' = X3 + T (4) */
secp256k1_fe_mul(&r->y, &t, &l); /* Y3 = L*(X3 + T) (1) */
secp256k1_fe_add(&r->y, &s); /* Y3 = L*(X3 + T) + S^2 (2) */
secp256k1_fe_negate(&r->y, &r->y, 2); /* Y3 = -(L*(X3 + T) + S^2) (3) */
secp256k1_gej_verify(r);
}
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
/** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
* Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
* y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
*
* Having said this, if this function receives a point on a sextic twist, e.g. by
* a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6,
* since -6 does have a cube root mod p. For this point, this function will not set
* the infinity flag even though the point doubles to infinity, and the result
* point will be gibberish (z = 0 but infinity = 0).
*/
secp256k1_gej_verify(a);
if (a->infinity) {
secp256k1_gej_set_infinity(r);
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 1);
}
return;
}
if (rzr != NULL) {
*rzr = a->y;
secp256k1_fe_normalize_weak(rzr);
}
secp256k1_gej_double(r, a);
secp256k1_gej_verify(r);
}
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
/* 12 mul, 4 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, h2, h3, t;
secp256k1_gej_verify(a);
secp256k1_gej_verify(b);
if (a->infinity) {
VERIFY_CHECK(rzr == NULL);
*r = *b;
return;
}
if (b->infinity) {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 1);
}
*r = *a;
return;
}
secp256k1_fe_sqr(&z22, &b->z);
secp256k1_fe_sqr(&z12, &a->z);
secp256k1_fe_mul(&u1, &a->x, &z22);
secp256k1_fe_mul(&u2, &b->x, &z12);
secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
secp256k1_gej_double_var(r, a, rzr);
} else {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 0);
}
secp256k1_gej_set_infinity(r);
}
return;
}
r->infinity = 0;
secp256k1_fe_mul(&t, &h, &b->z);
if (rzr != NULL) {
*rzr = t;
}
secp256k1_fe_mul(&r->z, &a->z, &t);
secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_negate(&h2, &h2, 1);
secp256k1_fe_mul(&h3, &h2, &h);
secp256k1_fe_mul(&t, &u1, &h2);
secp256k1_fe_sqr(&r->x, &i);
secp256k1_fe_add(&r->x, &h3);
secp256k1_fe_add(&r->x, &t);
secp256k1_fe_add(&r->x, &t);
secp256k1_fe_add(&t, &r->x);
secp256k1_fe_mul(&r->y, &t, &i);
secp256k1_fe_mul(&h3, &h3, &s1);
secp256k1_fe_add(&r->y, &h3);
secp256k1_gej_verify(r);
}
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
/* 8 mul, 3 sqr, 13 add/negate/normalize_weak/normalizes_to_zero (ignoring special cases) */
secp256k1_fe z12, u1, u2, s1, s2, h, i, h2, h3, t;
secp256k1_gej_verify(a);
secp256k1_ge_verify(b);
if (a->infinity) {
VERIFY_CHECK(rzr == NULL);
secp256k1_gej_set_ge(r, b);
return;
}
if (b->infinity) {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 1);
}
*r = *a;
return;
}
secp256k1_fe_sqr(&z12, &a->z);
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
secp256k1_fe_mul(&u2, &b->x, &z12);
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
secp256k1_gej_double_var(r, a, rzr);
} else {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 0);
}
secp256k1_gej_set_infinity(r);
}
return;
}
r->infinity = 0;
if (rzr != NULL) {
*rzr = h;
}
secp256k1_fe_mul(&r->z, &a->z, &h);
secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_negate(&h2, &h2, 1);
secp256k1_fe_mul(&h3, &h2, &h);
secp256k1_fe_mul(&t, &u1, &h2);
secp256k1_fe_sqr(&r->x, &i);
secp256k1_fe_add(&r->x, &h3);
secp256k1_fe_add(&r->x, &t);
secp256k1_fe_add(&r->x, &t);
secp256k1_fe_add(&t, &r->x);
secp256k1_fe_mul(&r->y, &t, &i);
secp256k1_fe_mul(&h3, &h3, &s1);
secp256k1_fe_add(&r->y, &h3);
secp256k1_gej_verify(r);
if (rzr != NULL) secp256k1_fe_verify(rzr);
}
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
/* 9 mul, 3 sqr, 13 add/negate/normalize_weak/normalizes_to_zero (ignoring special cases) */
secp256k1_fe az, z12, u1, u2, s1, s2, h, i, h2, h3, t;
secp256k1_ge_verify(b);
secp256k1_fe_verify(bzinv);
if (a->infinity) {
secp256k1_fe bzinv2, bzinv3;
r->infinity = b->infinity;
secp256k1_fe_sqr(&bzinv2, bzinv);
secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
secp256k1_fe_set_int(&r->z, 1);
return;
}
if (b->infinity) {
*r = *a;
return;
}
/** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to
* secp256k1's isomorphism we can multiply the Z coordinates on both sides
* by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1).
* This means that (rx,ry,rz) can be calculated as
* (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz.
* The variable az below holds the modified Z coordinate for a, which is used
* for the computation of rx and ry, but not for rz.
*/
secp256k1_fe_mul(&az, &a->z, bzinv);
secp256k1_fe_sqr(&z12, &az);
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
secp256k1_fe_mul(&u2, &b->x, &z12);
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
secp256k1_gej_double_var(r, a, NULL);
} else {
secp256k1_gej_set_infinity(r);
}
return;
}
r->infinity = 0;
secp256k1_fe_mul(&r->z, &a->z, &h);
secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_negate(&h2, &h2, 1);
secp256k1_fe_mul(&h3, &h2, &h);
secp256k1_fe_mul(&t, &u1, &h2);
secp256k1_fe_sqr(&r->x, &i);
secp256k1_fe_add(&r->x, &h3);
secp256k1_fe_add(&r->x, &t);
secp256k1_fe_add(&r->x, &t);
secp256k1_fe_add(&t, &r->x);
secp256k1_fe_mul(&r->y, &t, &i);
secp256k1_fe_mul(&h3, &h3, &s1);
secp256k1_fe_add(&r->y, &h3);
secp256k1_gej_verify(r);
}
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
/* Operations: 7 mul, 5 sqr, 24 add/cmov/half/mul_int/negate/normalize_weak/normalizes_to_zero */
secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
secp256k1_fe m_alt, rr_alt;
int degenerate;
secp256k1_gej_verify(a);
secp256k1_ge_verify(b);
VERIFY_CHECK(!b->infinity);
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
/* In:
* Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
* In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
* we find as solution for a unified addition/doubling formula:
* lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
* x3 = lambda^2 - (x1 + x2)
* 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
*
* Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
* U1 = X1*Z2^2, U2 = X2*Z1^2
* S1 = Y1*Z2^3, S2 = Y2*Z1^3
* Z = Z1*Z2
* T = U1+U2
* M = S1+S2
* Q = -T*M^2
* R = T^2-U1*U2
* X3 = R^2+Q
* Y3 = -(R*(2*X3+Q)+M^4)/2
* Z3 = M*Z
* (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
*
* This formula has the benefit of being the same for both addition
* of distinct points and doubling. However, it breaks down in the
* case that either point is infinity, or that y1 = -y2. We handle
* these cases in the following ways:
*
* - If b is infinity we simply bail by means of a VERIFY_CHECK.
*
* - If a is infinity, we detect this, and at the end of the
* computation replace the result (which will be meaningless,
* but we compute to be constant-time) with b.x : b.y : 1.
*
* - If a = -b, we have y1 = -y2, which is a degenerate case.
* But here the answer is infinity, so we simply set the
* infinity flag of the result, overriding the computed values
* without even needing to cmov.
*
* - If y1 = -y2 but x1 != x2, which does occur thanks to certain
* properties of our curve (specifically, 1 has nontrivial cube
* roots in our field, and the curve equation has no x coefficient)
* then the answer is not infinity but also not given by the above
* equation. In this case, we cmov in place an alternate expression
* for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
* expressions for lambda are defined, they are equal, and can be
* obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
* then substitution of x^3 + 7 for y^2 (using the curve equation).
* For all pairs of nonzero points (a, b) at least one is defined,
* so this covers everything.
*/
secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
/* If lambda = R/M = R/0 we have a problem (except in the "trivial"
* case that Z = z1z2 = 0, and this is special-cased later on). */
degenerate = secp256k1_fe_normalizes_to_zero(&m);
/* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
* This means either x1 == beta*x2 or beta*x1 == x2, where beta is
* a nontrivial cube root of one. In either case, an alternate
* non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
* so we set R/M equal to this. */
rr_alt = s1;
secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
secp256k1_fe_cmov(&m_alt, &m, !degenerate);
/* Now Ralt / Malt = lambda and is guaranteed not to be Ralt / 0.
* From here on out Ralt and Malt represent the numerator
* and denominator of lambda; R and M represent the explicit
* expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
secp256k1_fe_negate(&q, &t, 2); /* q = -T (3) */
secp256k1_fe_mul(&q, &q, &n); /* q = Q = -T*Malt^2 (1) */
/* These two lines use the observation that either M == Malt or M == 0,
* so M^3 * Malt is either Malt^4 (which is computed by squaring), or
* zero (which is "computed" by cmov). So the cost is one squaring
* versus two multiplications. */
secp256k1_fe_sqr(&n, &n);
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Z3 = Malt*Z (1) */
secp256k1_fe_add(&t, &q); /* t = Ralt^2 + Q (2) */
r->x = t; /* r->x = X3 = Ralt^2 + Q (2) */
secp256k1_fe_mul_int(&t, 2); /* t = 2*X3 (4) */
secp256k1_fe_add(&t, &q); /* t = 2*X3 + Q (5) */
secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*X3 + Q) (1) */
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (3) */
secp256k1_fe_negate(&r->y, &t, 3); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (4) */
secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 (3) */
/* In case a->infinity == 1, replace r with (b->x, b->y, 1). */
secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
secp256k1_fe_cmov(&r->z, &secp256k1_fe_one, a->infinity);
/* Set r->infinity if r->z is 0.
*
* If a->infinity is set, then r->infinity = (r->z == 0) = (1 == 0) = false,
* which is correct because the function assumes that b is not infinity.
*
* Now assume !a->infinity. This implies Z = Z1 != 0.
*
* Case y1 = -y2:
* In this case we could have a = -b, namely if x1 = x2.
* We have degenerate = true, r->z = (x1 - x2) * Z.
* Then r->infinity = ((x1 - x2)Z == 0) = (x1 == x2) = (a == -b).
*
* Case y1 != -y2:
* In this case, we can't have a = -b.
* We have degenerate = false, r->z = (y1 + y2) * Z.
* Then r->infinity = ((y1 + y2)Z == 0) = (y1 == -y2) = false. */
r->infinity = secp256k1_fe_normalizes_to_zero(&r->z);
secp256k1_gej_verify(r);
}
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
/* Operations: 4 mul, 1 sqr */
secp256k1_fe zz;
secp256k1_gej_verify(r);
secp256k1_fe_verify(s);
#ifdef VERIFY
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(s));
#endif
secp256k1_fe_sqr(&zz, s);
secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
secp256k1_fe_mul(&r->y, &r->y, &zz);
secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
secp256k1_gej_verify(r);
}
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
secp256k1_fe x, y;
secp256k1_ge_verify(a);
VERIFY_CHECK(!a->infinity);
x = a->x;
secp256k1_fe_normalize(&x);
y = a->y;
secp256k1_fe_normalize(&y);
secp256k1_fe_to_storage(&r->x, &x);
secp256k1_fe_to_storage(&r->y, &y);
}
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) {
secp256k1_fe_from_storage(&r->x, &a->x);
secp256k1_fe_from_storage(&r->y, &a->y);
r->infinity = 0;
secp256k1_ge_verify(r);
}
static SECP256K1_INLINE void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag) {
secp256k1_gej_verify(r);
secp256k1_gej_verify(a);
secp256k1_fe_cmov(&r->x, &a->x, flag);
secp256k1_fe_cmov(&r->y, &a->y, flag);
secp256k1_fe_cmov(&r->z, &a->z, flag);
r->infinity ^= (r->infinity ^ a->infinity) & flag;
secp256k1_gej_verify(r);
}
static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
}
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
*r = *a;
secp256k1_ge_verify(a);
secp256k1_fe_mul(&r->x, &r->x, &secp256k1_const_beta);
secp256k1_ge_verify(r);
}
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
#ifdef EXHAUSTIVE_TEST_ORDER
secp256k1_gej out;
int i;
secp256k1_ge_verify(ge);
/* A very simple EC multiplication ladder that avoids a dependency on ecmult. */
secp256k1_gej_set_infinity(&out);
for (i = 0; i < 32; ++i) {
secp256k1_gej_double_var(&out, &out, NULL);
if ((((uint32_t)EXHAUSTIVE_TEST_ORDER) >> (31 - i)) & 1) {
secp256k1_gej_add_ge_var(&out, &out, ge, NULL);
}
}
return secp256k1_gej_is_infinity(&out);
#else
(void)ge;
/* The real secp256k1 group has cofactor 1, so the subgroup is the entire curve. */
return 1;
#endif
}
#endif /* SECP256K1_GROUP_IMPL_H */

41
ext/secp256k1/src/hash.h Normal file
View File

@ -0,0 +1,41 @@
/***********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_HASH_H
#define SECP256K1_HASH_H
#include <stdlib.h>
#include <stdint.h>
typedef struct {
uint32_t s[8];
unsigned char buf[64];
uint64_t bytes;
} secp256k1_sha256;
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash);
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size);
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32);
typedef struct {
secp256k1_sha256 inner, outer;
} secp256k1_hmac_sha256;
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t size);
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size);
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32);
typedef struct {
unsigned char v[32];
unsigned char k[32];
int retry;
} secp256k1_rfc6979_hmac_sha256;
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen);
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen);
static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256 *rng);
#endif /* SECP256K1_HASH_H */

View File

@ -0,0 +1,290 @@
/***********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_HASH_IMPL_H
#define SECP256K1_HASH_IMPL_H
#include "hash.h"
#include "util.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define Maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
#define Sigma0(x) (((x) >> 2 | (x) << 30) ^ ((x) >> 13 | (x) << 19) ^ ((x) >> 22 | (x) << 10))
#define Sigma1(x) (((x) >> 6 | (x) << 26) ^ ((x) >> 11 | (x) << 21) ^ ((x) >> 25 | (x) << 7))
#define sigma0(x) (((x) >> 7 | (x) << 25) ^ ((x) >> 18 | (x) << 14) ^ ((x) >> 3))
#define sigma1(x) (((x) >> 17 | (x) << 15) ^ ((x) >> 19 | (x) << 13) ^ ((x) >> 10))
#define Round(a,b,c,d,e,f,g,h,k,w) do { \
uint32_t t1 = (h) + Sigma1(e) + Ch((e), (f), (g)) + (k) + (w); \
uint32_t t2 = Sigma0(a) + Maj((a), (b), (c)); \
(d) += t1; \
(h) = t1 + t2; \
} while(0)
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash) {
hash->s[0] = 0x6a09e667ul;
hash->s[1] = 0xbb67ae85ul;
hash->s[2] = 0x3c6ef372ul;
hash->s[3] = 0xa54ff53aul;
hash->s[4] = 0x510e527ful;
hash->s[5] = 0x9b05688cul;
hash->s[6] = 0x1f83d9abul;
hash->s[7] = 0x5be0cd19ul;
hash->bytes = 0;
}
/** Perform one SHA-256 transformation, processing 16 big endian 32-bit words. */
static void secp256k1_sha256_transform(uint32_t* s, const unsigned char* buf) {
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
Round(a, b, c, d, e, f, g, h, 0x428a2f98, w0 = secp256k1_read_be32(&buf[0]));
Round(h, a, b, c, d, e, f, g, 0x71374491, w1 = secp256k1_read_be32(&buf[4]));
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w2 = secp256k1_read_be32(&buf[8]));
Round(f, g, h, a, b, c, d, e, 0xe9b5dba5, w3 = secp256k1_read_be32(&buf[12]));
Round(e, f, g, h, a, b, c, d, 0x3956c25b, w4 = secp256k1_read_be32(&buf[16]));
Round(d, e, f, g, h, a, b, c, 0x59f111f1, w5 = secp256k1_read_be32(&buf[20]));
Round(c, d, e, f, g, h, a, b, 0x923f82a4, w6 = secp256k1_read_be32(&buf[24]));
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5, w7 = secp256k1_read_be32(&buf[28]));
Round(a, b, c, d, e, f, g, h, 0xd807aa98, w8 = secp256k1_read_be32(&buf[32]));
Round(h, a, b, c, d, e, f, g, 0x12835b01, w9 = secp256k1_read_be32(&buf[36]));
Round(g, h, a, b, c, d, e, f, 0x243185be, w10 = secp256k1_read_be32(&buf[40]));
Round(f, g, h, a, b, c, d, e, 0x550c7dc3, w11 = secp256k1_read_be32(&buf[44]));
Round(e, f, g, h, a, b, c, d, 0x72be5d74, w12 = secp256k1_read_be32(&buf[48]));
Round(d, e, f, g, h, a, b, c, 0x80deb1fe, w13 = secp256k1_read_be32(&buf[52]));
Round(c, d, e, f, g, h, a, b, 0x9bdc06a7, w14 = secp256k1_read_be32(&buf[56]));
Round(b, c, d, e, f, g, h, a, 0xc19bf174, w15 = secp256k1_read_be32(&buf[60]));
Round(a, b, c, d, e, f, g, h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
s[0] += a;
s[1] += b;
s[2] += c;
s[3] += d;
s[4] += e;
s[5] += f;
s[6] += g;
s[7] += h;
}
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t len) {
size_t bufsize = hash->bytes & 0x3F;
hash->bytes += len;
VERIFY_CHECK(hash->bytes >= len);
while (len >= 64 - bufsize) {
/* Fill the buffer, and process it. */
size_t chunk_len = 64 - bufsize;
memcpy(hash->buf + bufsize, data, chunk_len);
data += chunk_len;
len -= chunk_len;
secp256k1_sha256_transform(hash->s, hash->buf);
bufsize = 0;
}
if (len) {
/* Fill the buffer with what remains. */
memcpy(((unsigned char*)hash->buf) + bufsize, data, len);
}
}
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32) {
static const unsigned char pad[64] = {0x80};
unsigned char sizedesc[8];
int i;
/* The maximum message size of SHA256 is 2^64-1 bits. */
VERIFY_CHECK(hash->bytes < ((uint64_t)1 << 61));
secp256k1_write_be32(&sizedesc[0], hash->bytes >> 29);
secp256k1_write_be32(&sizedesc[4], hash->bytes << 3);
secp256k1_sha256_write(hash, pad, 1 + ((119 - (hash->bytes % 64)) % 64));
secp256k1_sha256_write(hash, sizedesc, 8);
for (i = 0; i < 8; i++) {
secp256k1_write_be32(&out32[4*i], hash->s[i]);
hash->s[i] = 0;
}
}
/* Initializes a sha256 struct and writes the 64 byte string
* SHA256(tag)||SHA256(tag) into it. */
static void secp256k1_sha256_initialize_tagged(secp256k1_sha256 *hash, const unsigned char *tag, size_t taglen) {
unsigned char buf[32];
secp256k1_sha256_initialize(hash);
secp256k1_sha256_write(hash, tag, taglen);
secp256k1_sha256_finalize(hash, buf);
secp256k1_sha256_initialize(hash);
secp256k1_sha256_write(hash, buf, 32);
secp256k1_sha256_write(hash, buf, 32);
}
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t keylen) {
size_t n;
unsigned char rkey[64];
if (keylen <= sizeof(rkey)) {
memcpy(rkey, key, keylen);
memset(rkey + keylen, 0, sizeof(rkey) - keylen);
} else {
secp256k1_sha256 sha256;
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, key, keylen);
secp256k1_sha256_finalize(&sha256, rkey);
memset(rkey + 32, 0, 32);
}
secp256k1_sha256_initialize(&hash->outer);
for (n = 0; n < sizeof(rkey); n++) {
rkey[n] ^= 0x5c;
}
secp256k1_sha256_write(&hash->outer, rkey, sizeof(rkey));
secp256k1_sha256_initialize(&hash->inner);
for (n = 0; n < sizeof(rkey); n++) {
rkey[n] ^= 0x5c ^ 0x36;
}
secp256k1_sha256_write(&hash->inner, rkey, sizeof(rkey));
memset(rkey, 0, sizeof(rkey));
}
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size) {
secp256k1_sha256_write(&hash->inner, data, size);
}
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32) {
unsigned char temp[32];
secp256k1_sha256_finalize(&hash->inner, temp);
secp256k1_sha256_write(&hash->outer, temp, 32);
memset(temp, 0, 32);
secp256k1_sha256_finalize(&hash->outer, out32);
}
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen) {
secp256k1_hmac_sha256 hmac;
static const unsigned char zero[1] = {0x00};
static const unsigned char one[1] = {0x01};
memset(rng->v, 0x01, 32); /* RFC6979 3.2.b. */
memset(rng->k, 0x00, 32); /* RFC6979 3.2.c. */
/* RFC6979 3.2.d. */
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, zero, 1);
secp256k1_hmac_sha256_write(&hmac, key, keylen);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
/* RFC6979 3.2.f. */
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, one, 1);
secp256k1_hmac_sha256_write(&hmac, key, keylen);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
rng->retry = 0;
}
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen) {
/* RFC6979 3.2.h. */
static const unsigned char zero[1] = {0x00};
if (rng->retry) {
secp256k1_hmac_sha256 hmac;
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, zero, 1);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
}
while (outlen > 0) {
secp256k1_hmac_sha256 hmac;
int now = outlen;
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
if (now > 32) {
now = 32;
}
memcpy(out, rng->v, now);
out += now;
outlen -= now;
}
rng->retry = 1;
}
static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256 *rng) {
memset(rng->k, 0, 32);
memset(rng->v, 0, 32);
rng->retry = 0;
}
#undef Round
#undef sigma1
#undef sigma0
#undef Sigma1
#undef Sigma0
#undef Maj
#undef Ch
#endif /* SECP256K1_HASH_IMPL_H */

View File

@ -0,0 +1,90 @@
#ifndef SECP256K1_INT128_H
#define SECP256K1_INT128_H
#include "util.h"
#if defined(SECP256K1_WIDEMUL_INT128)
# if defined(SECP256K1_INT128_NATIVE)
# include "int128_native.h"
# elif defined(SECP256K1_INT128_STRUCT)
# include "int128_struct.h"
# else
# error "Please select int128 implementation"
# endif
/* Construct an unsigned 128-bit value from a high and a low 64-bit value. */
static SECP256K1_INLINE void secp256k1_u128_load(secp256k1_uint128 *r, uint64_t hi, uint64_t lo);
/* Multiply two unsigned 64-bit values a and b and write the result to r. */
static SECP256K1_INLINE void secp256k1_u128_mul(secp256k1_uint128 *r, uint64_t a, uint64_t b);
/* Multiply two unsigned 64-bit values a and b and add the result to r.
* The final result is taken modulo 2^128.
*/
static SECP256K1_INLINE void secp256k1_u128_accum_mul(secp256k1_uint128 *r, uint64_t a, uint64_t b);
/* Add an unsigned 64-bit value a to r.
* The final result is taken modulo 2^128.
*/
static SECP256K1_INLINE void secp256k1_u128_accum_u64(secp256k1_uint128 *r, uint64_t a);
/* Unsigned (logical) right shift.
* Non-constant time in n.
*/
static SECP256K1_INLINE void secp256k1_u128_rshift(secp256k1_uint128 *r, unsigned int n);
/* Return the low 64-bits of a 128-bit value as an unsigned 64-bit value. */
static SECP256K1_INLINE uint64_t secp256k1_u128_to_u64(const secp256k1_uint128 *a);
/* Return the high 64-bits of a 128-bit value as an unsigned 64-bit value. */
static SECP256K1_INLINE uint64_t secp256k1_u128_hi_u64(const secp256k1_uint128 *a);
/* Write an unsigned 64-bit value to r. */
static SECP256K1_INLINE void secp256k1_u128_from_u64(secp256k1_uint128 *r, uint64_t a);
/* Tests if r is strictly less than to 2^n.
* n must be strictly less than 128.
*/
static SECP256K1_INLINE int secp256k1_u128_check_bits(const secp256k1_uint128 *r, unsigned int n);
/* Construct an signed 128-bit value from a high and a low 64-bit value. */
static SECP256K1_INLINE void secp256k1_i128_load(secp256k1_int128 *r, int64_t hi, uint64_t lo);
/* Multiply two signed 64-bit values a and b and write the result to r. */
static SECP256K1_INLINE void secp256k1_i128_mul(secp256k1_int128 *r, int64_t a, int64_t b);
/* Multiply two signed 64-bit values a and b and add the result to r.
* Overflow or underflow from the addition is undefined behaviour.
*/
static SECP256K1_INLINE void secp256k1_i128_accum_mul(secp256k1_int128 *r, int64_t a, int64_t b);
/* Compute a*d - b*c from signed 64-bit values and write the result to r. */
static SECP256K1_INLINE void secp256k1_i128_det(secp256k1_int128 *r, int64_t a, int64_t b, int64_t c, int64_t d);
/* Signed (arithmetic) right shift.
* Non-constant time in b.
*/
static SECP256K1_INLINE void secp256k1_i128_rshift(secp256k1_int128 *r, unsigned int b);
/* Return the input value modulo 2^64. */
static SECP256K1_INLINE uint64_t secp256k1_i128_to_u64(const secp256k1_int128 *a);
/* Return the value as a signed 64-bit value.
* Requires the input to be between INT64_MIN and INT64_MAX.
*/
static SECP256K1_INLINE int64_t secp256k1_i128_to_i64(const secp256k1_int128 *a);
/* Write a signed 64-bit value to r. */
static SECP256K1_INLINE void secp256k1_i128_from_i64(secp256k1_int128 *r, int64_t a);
/* Compare two 128-bit values for equality. */
static SECP256K1_INLINE int secp256k1_i128_eq_var(const secp256k1_int128 *a, const secp256k1_int128 *b);
/* Tests if r is equal to sign*2^n (sign must be 1 or -1).
* n must be strictly less than 127.
*/
static SECP256K1_INLINE int secp256k1_i128_check_pow2(const secp256k1_int128 *r, unsigned int n, int sign);
#endif
#endif

View File

@ -0,0 +1,18 @@
#ifndef SECP256K1_INT128_IMPL_H
#define SECP256K1_INT128_IMPL_H
#include "util.h"
#include "int128.h"
#if defined(SECP256K1_WIDEMUL_INT128)
# if defined(SECP256K1_INT128_NATIVE)
# include "int128_native_impl.h"
# elif defined(SECP256K1_INT128_STRUCT)
# include "int128_struct_impl.h"
# else
# error "Please select int128 implementation"
# endif
#endif
#endif

View File

@ -0,0 +1,19 @@
#ifndef SECP256K1_INT128_NATIVE_H
#define SECP256K1_INT128_NATIVE_H
#include <stdint.h>
#include "util.h"
#if !defined(UINT128_MAX) && defined(__SIZEOF_INT128__)
SECP256K1_GNUC_EXT typedef unsigned __int128 uint128_t;
SECP256K1_GNUC_EXT typedef __int128 int128_t;
# define UINT128_MAX ((uint128_t)(-1))
# define INT128_MAX ((int128_t)(UINT128_MAX >> 1))
# define INT128_MIN (-INT128_MAX - 1)
/* No (U)INT128_C macros because compilers providing __int128 do not support 128-bit literals. */
#endif
typedef uint128_t secp256k1_uint128;
typedef int128_t secp256k1_int128;
#endif

View File

@ -0,0 +1,94 @@
#ifndef SECP256K1_INT128_NATIVE_IMPL_H
#define SECP256K1_INT128_NATIVE_IMPL_H
#include "int128.h"
#include "util.h"
static SECP256K1_INLINE void secp256k1_u128_load(secp256k1_uint128 *r, uint64_t hi, uint64_t lo) {
*r = (((uint128_t)hi) << 64) + lo;
}
static SECP256K1_INLINE void secp256k1_u128_mul(secp256k1_uint128 *r, uint64_t a, uint64_t b) {
*r = (uint128_t)a * b;
}
static SECP256K1_INLINE void secp256k1_u128_accum_mul(secp256k1_uint128 *r, uint64_t a, uint64_t b) {
*r += (uint128_t)a * b;
}
static SECP256K1_INLINE void secp256k1_u128_accum_u64(secp256k1_uint128 *r, uint64_t a) {
*r += a;
}
static SECP256K1_INLINE void secp256k1_u128_rshift(secp256k1_uint128 *r, unsigned int n) {
VERIFY_CHECK(n < 128);
*r >>= n;
}
static SECP256K1_INLINE uint64_t secp256k1_u128_to_u64(const secp256k1_uint128 *a) {
return (uint64_t)(*a);
}
static SECP256K1_INLINE uint64_t secp256k1_u128_hi_u64(const secp256k1_uint128 *a) {
return (uint64_t)(*a >> 64);
}
static SECP256K1_INLINE void secp256k1_u128_from_u64(secp256k1_uint128 *r, uint64_t a) {
*r = a;
}
static SECP256K1_INLINE int secp256k1_u128_check_bits(const secp256k1_uint128 *r, unsigned int n) {
VERIFY_CHECK(n < 128);
return (*r >> n == 0);
}
static SECP256K1_INLINE void secp256k1_i128_load(secp256k1_int128 *r, int64_t hi, uint64_t lo) {
*r = (((uint128_t)(uint64_t)hi) << 64) + lo;
}
static SECP256K1_INLINE void secp256k1_i128_mul(secp256k1_int128 *r, int64_t a, int64_t b) {
*r = (int128_t)a * b;
}
static SECP256K1_INLINE void secp256k1_i128_accum_mul(secp256k1_int128 *r, int64_t a, int64_t b) {
int128_t ab = (int128_t)a * b;
VERIFY_CHECK(0 <= ab ? *r <= INT128_MAX - ab : INT128_MIN - ab <= *r);
*r += ab;
}
static SECP256K1_INLINE void secp256k1_i128_det(secp256k1_int128 *r, int64_t a, int64_t b, int64_t c, int64_t d) {
int128_t ad = (int128_t)a * d;
int128_t bc = (int128_t)b * c;
VERIFY_CHECK(0 <= bc ? INT128_MIN + bc <= ad : ad <= INT128_MAX + bc);
*r = ad - bc;
}
static SECP256K1_INLINE void secp256k1_i128_rshift(secp256k1_int128 *r, unsigned int n) {
VERIFY_CHECK(n < 128);
*r >>= n;
}
static SECP256K1_INLINE uint64_t secp256k1_i128_to_u64(const secp256k1_int128 *a) {
return (uint64_t)*a;
}
static SECP256K1_INLINE int64_t secp256k1_i128_to_i64(const secp256k1_int128 *a) {
VERIFY_CHECK(INT64_MIN <= *a && *a <= INT64_MAX);
return *a;
}
static SECP256K1_INLINE void secp256k1_i128_from_i64(secp256k1_int128 *r, int64_t a) {
*r = a;
}
static SECP256K1_INLINE int secp256k1_i128_eq_var(const secp256k1_int128 *a, const secp256k1_int128 *b) {
return *a == *b;
}
static SECP256K1_INLINE int secp256k1_i128_check_pow2(const secp256k1_int128 *r, unsigned int n, int sign) {
VERIFY_CHECK(n < 127);
VERIFY_CHECK(sign == 1 || sign == -1);
return (*r == (int128_t)((uint128_t)sign << n));
}
#endif

View File

@ -0,0 +1,14 @@
#ifndef SECP256K1_INT128_STRUCT_H
#define SECP256K1_INT128_STRUCT_H
#include <stdint.h>
#include "util.h"
typedef struct {
uint64_t lo;
uint64_t hi;
} secp256k1_uint128;
typedef secp256k1_uint128 secp256k1_int128;
#endif

View File

@ -0,0 +1,200 @@
#ifndef SECP256K1_INT128_STRUCT_IMPL_H
#define SECP256K1_INT128_STRUCT_IMPL_H
#include "int128.h"
#include "util.h"
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_ARM64)) /* MSVC */
# include <intrin.h>
# if defined(_M_ARM64) || defined(SECP256K1_MSVC_MULH_TEST_OVERRIDE)
/* On ARM64 MSVC, use __(u)mulh for the upper half of 64x64 multiplications.
(Define SECP256K1_MSVC_MULH_TEST_OVERRIDE to test this code path on X64,
which supports both __(u)mulh and _umul128.) */
# if defined(SECP256K1_MSVC_MULH_TEST_OVERRIDE)
# pragma message(__FILE__ ": SECP256K1_MSVC_MULH_TEST_OVERRIDE is defined, forcing use of __(u)mulh.")
# endif
static SECP256K1_INLINE uint64_t secp256k1_umul128(uint64_t a, uint64_t b, uint64_t* hi) {
*hi = __umulh(a, b);
return a * b;
}
static SECP256K1_INLINE int64_t secp256k1_mul128(int64_t a, int64_t b, int64_t* hi) {
*hi = __mulh(a, b);
return (uint64_t)a * (uint64_t)b;
}
# else
/* On x84_64 MSVC, use native _(u)mul128 for 64x64->128 multiplications. */
# define secp256k1_umul128 _umul128
# define secp256k1_mul128 _mul128
# endif
#else
/* On other systems, emulate 64x64->128 multiplications using 32x32->64 multiplications. */
static SECP256K1_INLINE uint64_t secp256k1_umul128(uint64_t a, uint64_t b, uint64_t* hi) {
uint64_t ll = (uint64_t)(uint32_t)a * (uint32_t)b;
uint64_t lh = (uint32_t)a * (b >> 32);
uint64_t hl = (a >> 32) * (uint32_t)b;
uint64_t hh = (a >> 32) * (b >> 32);
uint64_t mid34 = (ll >> 32) + (uint32_t)lh + (uint32_t)hl;
*hi = hh + (lh >> 32) + (hl >> 32) + (mid34 >> 32);
return (mid34 << 32) + (uint32_t)ll;
}
static SECP256K1_INLINE int64_t secp256k1_mul128(int64_t a, int64_t b, int64_t* hi) {
uint64_t ll = (uint64_t)(uint32_t)a * (uint32_t)b;
int64_t lh = (uint32_t)a * (b >> 32);
int64_t hl = (a >> 32) * (uint32_t)b;
int64_t hh = (a >> 32) * (b >> 32);
uint64_t mid34 = (ll >> 32) + (uint32_t)lh + (uint32_t)hl;
*hi = hh + (lh >> 32) + (hl >> 32) + (mid34 >> 32);
return (mid34 << 32) + (uint32_t)ll;
}
#endif
static SECP256K1_INLINE void secp256k1_u128_load(secp256k1_uint128 *r, uint64_t hi, uint64_t lo) {
r->hi = hi;
r->lo = lo;
}
static SECP256K1_INLINE void secp256k1_u128_mul(secp256k1_uint128 *r, uint64_t a, uint64_t b) {
r->lo = secp256k1_umul128(a, b, &r->hi);
}
static SECP256K1_INLINE void secp256k1_u128_accum_mul(secp256k1_uint128 *r, uint64_t a, uint64_t b) {
uint64_t lo, hi;
lo = secp256k1_umul128(a, b, &hi);
r->lo += lo;
r->hi += hi + (r->lo < lo);
}
static SECP256K1_INLINE void secp256k1_u128_accum_u64(secp256k1_uint128 *r, uint64_t a) {
r->lo += a;
r->hi += r->lo < a;
}
/* Unsigned (logical) right shift.
* Non-constant time in n.
*/
static SECP256K1_INLINE void secp256k1_u128_rshift(secp256k1_uint128 *r, unsigned int n) {
VERIFY_CHECK(n < 128);
if (n >= 64) {
r->lo = r->hi >> (n-64);
r->hi = 0;
} else if (n > 0) {
r->lo = ((1U * r->hi) << (64-n)) | r->lo >> n;
r->hi >>= n;
}
}
static SECP256K1_INLINE uint64_t secp256k1_u128_to_u64(const secp256k1_uint128 *a) {
return a->lo;
}
static SECP256K1_INLINE uint64_t secp256k1_u128_hi_u64(const secp256k1_uint128 *a) {
return a->hi;
}
static SECP256K1_INLINE void secp256k1_u128_from_u64(secp256k1_uint128 *r, uint64_t a) {
r->hi = 0;
r->lo = a;
}
static SECP256K1_INLINE int secp256k1_u128_check_bits(const secp256k1_uint128 *r, unsigned int n) {
VERIFY_CHECK(n < 128);
return n >= 64 ? r->hi >> (n - 64) == 0
: r->hi == 0 && r->lo >> n == 0;
}
static SECP256K1_INLINE void secp256k1_i128_load(secp256k1_int128 *r, int64_t hi, uint64_t lo) {
r->hi = hi;
r->lo = lo;
}
static SECP256K1_INLINE void secp256k1_i128_mul(secp256k1_int128 *r, int64_t a, int64_t b) {
int64_t hi;
r->lo = (uint64_t)secp256k1_mul128(a, b, &hi);
r->hi = (uint64_t)hi;
}
static SECP256K1_INLINE void secp256k1_i128_accum_mul(secp256k1_int128 *r, int64_t a, int64_t b) {
int64_t hi;
uint64_t lo = (uint64_t)secp256k1_mul128(a, b, &hi);
r->lo += lo;
hi += r->lo < lo;
/* Verify no overflow.
* If r represents a positive value (the sign bit is not set) and the value we are adding is a positive value (the sign bit is not set),
* then we require that the resulting value also be positive (the sign bit is not set).
* Note that (X <= Y) means (X implies Y) when X and Y are boolean values (i.e. 0 or 1).
*/
VERIFY_CHECK((r->hi <= 0x7fffffffffffffffu && (uint64_t)hi <= 0x7fffffffffffffffu) <= (r->hi + (uint64_t)hi <= 0x7fffffffffffffffu));
/* Verify no underflow.
* If r represents a negative value (the sign bit is set) and the value we are adding is a negative value (the sign bit is set),
* then we require that the resulting value also be negative (the sign bit is set).
*/
VERIFY_CHECK((r->hi > 0x7fffffffffffffffu && (uint64_t)hi > 0x7fffffffffffffffu) <= (r->hi + (uint64_t)hi > 0x7fffffffffffffffu));
r->hi += hi;
}
static SECP256K1_INLINE void secp256k1_i128_dissip_mul(secp256k1_int128 *r, int64_t a, int64_t b) {
int64_t hi;
uint64_t lo = (uint64_t)secp256k1_mul128(a, b, &hi);
hi += r->lo < lo;
/* Verify no overflow.
* If r represents a positive value (the sign bit is not set) and the value we are subtracting is a negative value (the sign bit is set),
* then we require that the resulting value also be positive (the sign bit is not set).
*/
VERIFY_CHECK((r->hi <= 0x7fffffffffffffffu && (uint64_t)hi > 0x7fffffffffffffffu) <= (r->hi - (uint64_t)hi <= 0x7fffffffffffffffu));
/* Verify no underflow.
* If r represents a negative value (the sign bit is set) and the value we are subtracting is a positive value (the sign sign bit is not set),
* then we require that the resulting value also be negative (the sign bit is set).
*/
VERIFY_CHECK((r->hi > 0x7fffffffffffffffu && (uint64_t)hi <= 0x7fffffffffffffffu) <= (r->hi - (uint64_t)hi > 0x7fffffffffffffffu));
r->hi -= hi;
r->lo -= lo;
}
static SECP256K1_INLINE void secp256k1_i128_det(secp256k1_int128 *r, int64_t a, int64_t b, int64_t c, int64_t d) {
secp256k1_i128_mul(r, a, d);
secp256k1_i128_dissip_mul(r, b, c);
}
/* Signed (arithmetic) right shift.
* Non-constant time in n.
*/
static SECP256K1_INLINE void secp256k1_i128_rshift(secp256k1_int128 *r, unsigned int n) {
VERIFY_CHECK(n < 128);
if (n >= 64) {
r->lo = (uint64_t)((int64_t)(r->hi) >> (n-64));
r->hi = (uint64_t)((int64_t)(r->hi) >> 63);
} else if (n > 0) {
r->lo = ((1U * r->hi) << (64-n)) | r->lo >> n;
r->hi = (uint64_t)((int64_t)(r->hi) >> n);
}
}
static SECP256K1_INLINE uint64_t secp256k1_i128_to_u64(const secp256k1_int128 *a) {
return a->lo;
}
static SECP256K1_INLINE int64_t secp256k1_i128_to_i64(const secp256k1_int128 *a) {
/* Verify that a represents a 64 bit signed value by checking that the high bits are a sign extension of the low bits. */
VERIFY_CHECK(a->hi == -(a->lo >> 63));
return (int64_t)secp256k1_i128_to_u64(a);
}
static SECP256K1_INLINE void secp256k1_i128_from_i64(secp256k1_int128 *r, int64_t a) {
r->hi = (uint64_t)(a >> 63);
r->lo = (uint64_t)a;
}
static SECP256K1_INLINE int secp256k1_i128_eq_var(const secp256k1_int128 *a, const secp256k1_int128 *b) {
return a->hi == b->hi && a->lo == b->lo;
}
static SECP256K1_INLINE int secp256k1_i128_check_pow2(const secp256k1_int128 *r, unsigned int n, int sign) {
VERIFY_CHECK(n < 127);
VERIFY_CHECK(sign == 1 || sign == -1);
return n >= 64 ? r->hi == (uint64_t)sign << (n - 64) && r->lo == 0
: r->hi == (uint64_t)(sign >> 1) && r->lo == (uint64_t)sign << n;
}
#endif

View File

@ -0,0 +1,43 @@
/***********************************************************************
* Copyright (c) 2020 Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODINV32_H
#define SECP256K1_MODINV32_H
#include "util.h"
/* A signed 30-bit limb representation of integers.
*
* Its value is sum(v[i] * 2^(30*i), i=0..8). */
typedef struct {
int32_t v[9];
} secp256k1_modinv32_signed30;
typedef struct {
/* The modulus in signed30 notation, must be odd and in [3, 2^256]. */
secp256k1_modinv32_signed30 modulus;
/* modulus^{-1} mod 2^30 */
uint32_t modulus_inv30;
} secp256k1_modinv32_modinfo;
/* Replace x with its modular inverse mod modinfo->modulus. x must be in range [0, modulus).
* If x is zero, the result will be zero as well. If not, the inverse must exist (i.e., the gcd of
* x and modulus must be 1). These rules are automatically satisfied if the modulus is prime.
*
* On output, all of x's limbs will be in [0, 2^30).
*/
static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
/* Same as secp256k1_modinv32_var, but constant time in x (not in the modulus). */
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
/* Compute the Jacobi symbol for (x | modinfo->modulus). x must be coprime with modulus (and thus
* cannot be 0, as modulus >= 3). All limbs of x must be non-negative. Returns 0 if the result
* cannot be computed. */
static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
#endif /* SECP256K1_MODINV32_H */

View File

@ -0,0 +1,738 @@
/***********************************************************************
* Copyright (c) 2020 Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODINV32_IMPL_H
#define SECP256K1_MODINV32_IMPL_H
#include "modinv32.h"
#include "util.h"
#include <stdlib.h>
/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
* modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
*
* For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
* implementation for N=30, using 30-bit signed limbs represented as int32_t.
*/
#ifdef VERIFY
static const secp256k1_modinv32_signed30 SECP256K1_SIGNED30_ONE = {{1}};
/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^30). */
static void secp256k1_modinv32_mul_30(secp256k1_modinv32_signed30 *r, const secp256k1_modinv32_signed30 *a, int alen, int32_t factor) {
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
int64_t c = 0;
int i;
for (i = 0; i < 8; ++i) {
if (i < alen) c += (int64_t)a->v[i] * factor;
r->v[i] = (int32_t)c & M30; c >>= 30;
}
if (8 < alen) c += (int64_t)a->v[8] * factor;
VERIFY_CHECK(c == (int32_t)c);
r->v[8] = (int32_t)c;
}
/* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A consists of alen limbs; b has 9. */
static int secp256k1_modinv32_mul_cmp_30(const secp256k1_modinv32_signed30 *a, int alen, const secp256k1_modinv32_signed30 *b, int32_t factor) {
int i;
secp256k1_modinv32_signed30 am, bm;
secp256k1_modinv32_mul_30(&am, a, alen, 1); /* Normalize all but the top limb of a. */
secp256k1_modinv32_mul_30(&bm, b, 9, factor);
for (i = 0; i < 8; ++i) {
/* Verify that all but the top limb of a and b are normalized. */
VERIFY_CHECK(am.v[i] >> 30 == 0);
VERIFY_CHECK(bm.v[i] >> 30 == 0);
}
for (i = 8; i >= 0; --i) {
if (am.v[i] < bm.v[i]) return -1;
if (am.v[i] > bm.v[i]) return 1;
}
return 0;
}
#endif
/* Take as input a signed30 number in range (-2*modulus,modulus), and add a multiple of the modulus
* to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
* process. The input must have limbs in range (-2^30,2^30). The output will have limbs in range
* [0,2^30). */
static void secp256k1_modinv32_normalize_30(secp256k1_modinv32_signed30 *r, int32_t sign, const secp256k1_modinv32_modinfo *modinfo) {
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
int32_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4],
r5 = r->v[5], r6 = r->v[6], r7 = r->v[7], r8 = r->v[8];
volatile int32_t cond_add, cond_negate;
#ifdef VERIFY
/* Verify that all limbs are in range (-2^30,2^30). */
int i;
for (i = 0; i < 9; ++i) {
VERIFY_CHECK(r->v[i] >= -M30);
VERIFY_CHECK(r->v[i] <= M30);
}
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, -2) > 0); /* r > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 1) < 0); /* r < modulus */
#endif
/* In a first step, add the modulus if the input is negative, and then negate if requested.
* This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
* limbs are in range (-2^30,2^30), this cannot overflow an int32_t. Note that the right
* shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
* indeed the behavior of the right shift operator). */
cond_add = r8 >> 31;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
r5 += modinfo->modulus.v[5] & cond_add;
r6 += modinfo->modulus.v[6] & cond_add;
r7 += modinfo->modulus.v[7] & cond_add;
r8 += modinfo->modulus.v[8] & cond_add;
cond_negate = sign >> 31;
r0 = (r0 ^ cond_negate) - cond_negate;
r1 = (r1 ^ cond_negate) - cond_negate;
r2 = (r2 ^ cond_negate) - cond_negate;
r3 = (r3 ^ cond_negate) - cond_negate;
r4 = (r4 ^ cond_negate) - cond_negate;
r5 = (r5 ^ cond_negate) - cond_negate;
r6 = (r6 ^ cond_negate) - cond_negate;
r7 = (r7 ^ cond_negate) - cond_negate;
r8 = (r8 ^ cond_negate) - cond_negate;
/* Propagate the top bits, to bring limbs back to range (-2^30,2^30). */
r1 += r0 >> 30; r0 &= M30;
r2 += r1 >> 30; r1 &= M30;
r3 += r2 >> 30; r2 &= M30;
r4 += r3 >> 30; r3 &= M30;
r5 += r4 >> 30; r4 &= M30;
r6 += r5 >> 30; r5 &= M30;
r7 += r6 >> 30; r6 &= M30;
r8 += r7 >> 30; r7 &= M30;
/* In a second step add the modulus again if the result is still negative, bringing r to range
* [0,modulus). */
cond_add = r8 >> 31;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
r5 += modinfo->modulus.v[5] & cond_add;
r6 += modinfo->modulus.v[6] & cond_add;
r7 += modinfo->modulus.v[7] & cond_add;
r8 += modinfo->modulus.v[8] & cond_add;
/* And propagate again. */
r1 += r0 >> 30; r0 &= M30;
r2 += r1 >> 30; r1 &= M30;
r3 += r2 >> 30; r2 &= M30;
r4 += r3 >> 30; r3 &= M30;
r5 += r4 >> 30; r4 &= M30;
r6 += r5 >> 30; r5 &= M30;
r7 += r6 >> 30; r6 &= M30;
r8 += r7 >> 30; r7 &= M30;
r->v[0] = r0;
r->v[1] = r1;
r->v[2] = r2;
r->v[3] = r3;
r->v[4] = r4;
r->v[5] = r5;
r->v[6] = r6;
r->v[7] = r7;
r->v[8] = r8;
#ifdef VERIFY
VERIFY_CHECK(r0 >> 30 == 0);
VERIFY_CHECK(r1 >> 30 == 0);
VERIFY_CHECK(r2 >> 30 == 0);
VERIFY_CHECK(r3 >> 30 == 0);
VERIFY_CHECK(r4 >> 30 == 0);
VERIFY_CHECK(r5 >> 30 == 0);
VERIFY_CHECK(r6 >> 30 == 0);
VERIFY_CHECK(r7 >> 30 == 0);
VERIFY_CHECK(r8 >> 30 == 0);
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 0) >= 0); /* r >= 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 1) < 0); /* r < modulus */
#endif
}
/* Data type for transition matrices (see section 3 of explanation).
*
* t = [ u v ]
* [ q r ]
*/
typedef struct {
int32_t u, v, q, r;
} secp256k1_modinv32_trans2x2;
/* Compute the transition matrix and zeta for 30 divsteps.
*
* Input: zeta: initial zeta
* f0: bottom limb of initial f
* g0: bottom limb of initial g
* Output: t: transition matrix
* Return: final zeta
*
* Implements the divsteps_n_matrix function from the explanation.
*/
static int32_t secp256k1_modinv32_divsteps_30(int32_t zeta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
/* u,v,q,r are the elements of the transformation matrix being built up,
* starting with the identity matrix. Semantically they are signed integers
* in range [-2^30,2^30], but here represented as unsigned mod 2^32. This
* permits left shifting (which is UB for negative numbers). The range
* being inside [-2^31,2^31) means that casting to signed works correctly.
*/
uint32_t u = 1, v = 0, q = 0, r = 1;
volatile uint32_t c1, c2;
uint32_t mask1, mask2, f = f0, g = g0, x, y, z;
int i;
for (i = 0; i < 30; ++i) {
VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
VERIFY_CHECK((u * f0 + v * g0) == f << i);
VERIFY_CHECK((q * f0 + r * g0) == g << i);
/* Compute conditional masks for (zeta < 0) and for (g & 1). */
c1 = zeta >> 31;
mask1 = c1;
c2 = g & 1;
mask2 = -c2;
/* Compute x,y,z, conditionally negated versions of f,u,v. */
x = (f ^ mask1) - mask1;
y = (u ^ mask1) - mask1;
z = (v ^ mask1) - mask1;
/* Conditionally add x,y,z to g,q,r. */
g += x & mask2;
q += y & mask2;
r += z & mask2;
/* In what follows, mask1 is a condition mask for (zeta < 0) and (g & 1). */
mask1 &= mask2;
/* Conditionally change zeta into -zeta-2 or zeta-1. */
zeta = (zeta ^ mask1) - 1;
/* Conditionally add g,q,r to f,u,v. */
f += g & mask1;
u += q & mask1;
v += r & mask1;
/* Shifts */
g >>= 1;
u <<= 1;
v <<= 1;
/* Bounds on zeta that follow from the bounds on iteration count (max 20*30 divsteps). */
VERIFY_CHECK(zeta >= -601 && zeta <= 601);
}
/* Return data in t and return value. */
t->u = (int32_t)u;
t->v = (int32_t)v;
t->q = (int32_t)q;
t->r = (int32_t)r;
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2, the
* aggregate of 30 of them will have determinant 2^30. */
VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30);
return zeta;
}
/* secp256k1_modinv32_inv256[i] = -(2*i+1)^-1 (mod 256) */
static const uint8_t secp256k1_modinv32_inv256[128] = {
0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59,
0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31,
0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89,
0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61,
0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9,
0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91,
0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9,
0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1,
0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19,
0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1,
0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01
};
/* Compute the transition matrix and eta for 30 divsteps (variable time).
*
* Input: eta: initial eta
* f0: bottom limb of initial f
* g0: bottom limb of initial g
* Output: t: transition matrix
* Return: final eta
*
* Implements the divsteps_n_matrix_var function from the explanation.
*/
static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
/* Transformation matrix; see comments in secp256k1_modinv32_divsteps_30. */
uint32_t u = 1, v = 0, q = 0, r = 1;
uint32_t f = f0, g = g0, m;
uint16_t w;
int i = 30, limit, zeros;
for (;;) {
/* Use a sentinel bit to count zeros only up to i. */
zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i));
/* Perform zeros divsteps at once; they all just divide g by two. */
g >>= zeros;
u <<= zeros;
v <<= zeros;
eta -= zeros;
i -= zeros;
/* We're done once we've done 30 divsteps. */
if (i == 0) break;
VERIFY_CHECK((f & 1) == 1);
VERIFY_CHECK((g & 1) == 1);
VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i));
VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i));
/* Bounds on eta that follow from the bounds on iteration count (max 25*30 divsteps). */
VERIFY_CHECK(eta >= -751 && eta <= 751);
/* If eta is negative, negate it and replace f,g with g,-f. */
if (eta < 0) {
uint32_t tmp;
eta = -eta;
tmp = f; f = g; g = -tmp;
tmp = u; u = q; q = -tmp;
tmp = v; v = r; r = -tmp;
}
/* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more
* than i can be cancelled out (as we'd be done before that point), and no more than eta+1
* can be done as its sign will flip once that happens. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
/* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */
VERIFY_CHECK(limit > 0 && limit <= 30);
m = (UINT32_MAX >> (32 - limit)) & 255U;
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
w = (g * secp256k1_modinv32_inv256[(f >> 1) & 127]) & m;
/* Do so. */
g += f * w;
q += u * w;
r += v * w;
VERIFY_CHECK((g & m) == 0);
}
/* Return data in t and return value. */
t->u = (int32_t)u;
t->v = (int32_t)v;
t->q = (int32_t)q;
t->r = (int32_t)r;
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2, the
* aggregate of 30 of them will have determinant 2^30. */
VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30);
return eta;
}
/* Compute the transition matrix and eta for 30 posdivsteps (variable time, eta=-delta), and keeps track
* of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^32 rather than 2^30, because
* Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2).
*
* Input: eta: initial eta
* f0: bottom limb of initial f
* g0: bottom limb of initial g
* Output: t: transition matrix
* Input/Output: (*jacp & 1) is bitflipped if and only if the Jacobi symbol of (f | g) changes sign
* by applying the returned transformation matrix to it. The other bits of *jacp may
* change, but are meaningless.
* Return: final eta
*/
static int32_t secp256k1_modinv32_posdivsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t, int *jacp) {
/* Transformation matrix. */
uint32_t u = 1, v = 0, q = 0, r = 1;
uint32_t f = f0, g = g0, m;
uint16_t w;
int i = 30, limit, zeros;
int jac = *jacp;
for (;;) {
/* Use a sentinel bit to count zeros only up to i. */
zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i));
/* Perform zeros divsteps at once; they all just divide g by two. */
g >>= zeros;
u <<= zeros;
v <<= zeros;
eta -= zeros;
i -= zeros;
/* Update the bottom bit of jac: when dividing g by an odd power of 2,
* if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */
jac ^= (zeros & ((f >> 1) ^ (f >> 2)));
/* We're done once we've done 30 posdivsteps. */
if (i == 0) break;
VERIFY_CHECK((f & 1) == 1);
VERIFY_CHECK((g & 1) == 1);
VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i));
VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i));
/* If eta is negative, negate it and replace f,g with g,f. */
if (eta < 0) {
uint32_t tmp;
eta = -eta;
/* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign
* if both f and g are 3 mod 4. */
jac ^= ((f & g) >> 1);
tmp = f; f = g; g = tmp;
tmp = u; u = q; q = tmp;
tmp = v; v = r; r = tmp;
}
/* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more
* than i can be cancelled out (as we'd be done before that point), and no more than eta+1
* can be done as its sign will flip once that happens. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
/* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */
VERIFY_CHECK(limit > 0 && limit <= 30);
m = (UINT32_MAX >> (32 - limit)) & 255U;
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
w = (g * secp256k1_modinv32_inv256[(f >> 1) & 127]) & m;
/* Do so. */
g += f * w;
q += u * w;
r += v * w;
VERIFY_CHECK((g & m) == 0);
}
/* Return data in t and return value. */
t->u = (int32_t)u;
t->v = (int32_t)v;
t->q = (int32_t)q;
t->r = (int32_t)r;
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
* the aggregate of 30 of them will have determinant 2^30 or -2^30. */
VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30 ||
(int64_t)t->u * t->r - (int64_t)t->v * t->q == -(((int64_t)1) << 30));
*jacp = jac;
return eta;
}
/* Compute (t/2^30) * [d, e] mod modulus, where t is a transition matrix for 30 divsteps.
*
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
* (-2^30,2^30).
*
* This implements the update_de function from the explanation.
*/
static void secp256k1_modinv32_update_de_30(secp256k1_modinv32_signed30 *d, secp256k1_modinv32_signed30 *e, const secp256k1_modinv32_trans2x2 *t, const secp256k1_modinv32_modinfo* modinfo) {
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
int32_t di, ei, md, me, sd, se;
int64_t cd, ce;
int i;
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0); /* d < modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0); /* e < modulus */
VERIFY_CHECK(labs(u) <= (M30 + 1 - labs(v))); /* |u|+|v| <= 2^30 */
VERIFY_CHECK(labs(q) <= (M30 + 1 - labs(r))); /* |q|+|r| <= 2^30 */
#endif
/* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
sd = d->v[8] >> 31;
se = e->v[8] >> 31;
md = (u & sd) + (v & se);
me = (q & sd) + (r & se);
/* Begin computing t*[d,e]. */
di = d->v[0];
ei = e->v[0];
cd = (int64_t)u * di + (int64_t)v * ei;
ce = (int64_t)q * di + (int64_t)r * ei;
/* Correct md,me so that t*[d,e]+modulus*[md,me] has 30 zero bottom bits. */
md -= (modinfo->modulus_inv30 * (uint32_t)cd + md) & M30;
me -= (modinfo->modulus_inv30 * (uint32_t)ce + me) & M30;
/* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
cd += (int64_t)modinfo->modulus.v[0] * md;
ce += (int64_t)modinfo->modulus.v[0] * me;
/* Verify that the low 30 bits of the computation are indeed zero, and then throw them away. */
VERIFY_CHECK(((int32_t)cd & M30) == 0); cd >>= 30;
VERIFY_CHECK(((int32_t)ce & M30) == 0); ce >>= 30;
/* Now iteratively compute limb i=1..8 of t*[d,e]+modulus*[md,me], and store them in output
* limb i-1 (shifting down by 30 bits). */
for (i = 1; i < 9; ++i) {
di = d->v[i];
ei = e->v[i];
cd += (int64_t)u * di + (int64_t)v * ei;
ce += (int64_t)q * di + (int64_t)r * ei;
cd += (int64_t)modinfo->modulus.v[i] * md;
ce += (int64_t)modinfo->modulus.v[i] * me;
d->v[i - 1] = (int32_t)cd & M30; cd >>= 30;
e->v[i - 1] = (int32_t)ce & M30; ce >>= 30;
}
/* What remains is limb 9 of t*[d,e]+modulus*[md,me]; store it as output limb 8. */
d->v[8] = (int32_t)cd;
e->v[8] = (int32_t)ce;
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0); /* d < modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0); /* e < modulus */
#endif
}
/* Compute (t/2^30) * [f, g], where t is a transition matrix for 30 divsteps.
*
* This implements the update_fg function from the explanation.
*/
static void secp256k1_modinv32_update_fg_30(secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) {
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
int32_t fi, gi;
int64_t cf, cg;
int i;
/* Start computing t*[f,g]. */
fi = f->v[0];
gi = g->v[0];
cf = (int64_t)u * fi + (int64_t)v * gi;
cg = (int64_t)q * fi + (int64_t)r * gi;
/* Verify that the bottom 30 bits of the result are zero, and then throw them away. */
VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30;
VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30;
/* Now iteratively compute limb i=1..8 of t*[f,g], and store them in output limb i-1 (shifting
* down by 30 bits). */
for (i = 1; i < 9; ++i) {
fi = f->v[i];
gi = g->v[i];
cf += (int64_t)u * fi + (int64_t)v * gi;
cg += (int64_t)q * fi + (int64_t)r * gi;
f->v[i - 1] = (int32_t)cf & M30; cf >>= 30;
g->v[i - 1] = (int32_t)cg & M30; cg >>= 30;
}
/* What remains is limb 9 of t*[f,g]; store it as output limb 8. */
f->v[8] = (int32_t)cf;
g->v[8] = (int32_t)cg;
}
/* Compute (t/2^30) * [f, g], where t is a transition matrix for 30 divsteps.
*
* Version that operates on a variable number of limbs in f and g.
*
* This implements the update_fg function from the explanation in modinv64_impl.h.
*/
static void secp256k1_modinv32_update_fg_30_var(int len, secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) {
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
int32_t fi, gi;
int64_t cf, cg;
int i;
VERIFY_CHECK(len > 0);
/* Start computing t*[f,g]. */
fi = f->v[0];
gi = g->v[0];
cf = (int64_t)u * fi + (int64_t)v * gi;
cg = (int64_t)q * fi + (int64_t)r * gi;
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30;
VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30;
/* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
* down by 30 bits). */
for (i = 1; i < len; ++i) {
fi = f->v[i];
gi = g->v[i];
cf += (int64_t)u * fi + (int64_t)v * gi;
cg += (int64_t)q * fi + (int64_t)r * gi;
f->v[i - 1] = (int32_t)cf & M30; cf >>= 30;
g->v[i - 1] = (int32_t)cg & M30; cg >>= 30;
}
/* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */
f->v[len - 1] = (int32_t)cf;
g->v[len - 1] = (int32_t)cg;
}
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
/* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
secp256k1_modinv32_signed30 d = {{0}};
secp256k1_modinv32_signed30 e = {{1}};
secp256k1_modinv32_signed30 f = modinfo->modulus;
secp256k1_modinv32_signed30 g = *x;
int i;
int32_t zeta = -1; /* zeta = -(delta+1/2); delta is initially 1/2. */
/* Do 20 iterations of 30 divsteps each = 600 divsteps. 590 suffices for 256-bit inputs. */
for (i = 0; i < 20; ++i) {
/* Compute transition matrix and new zeta after 30 divsteps. */
secp256k1_modinv32_trans2x2 t;
zeta = secp256k1_modinv32_divsteps_30(zeta, f.v[0], g.v[0], &t);
/* Update d,e using that transition matrix. */
secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
secp256k1_modinv32_update_fg_30(&f, &g, &t);
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* At this point sufficient iterations have been performed that g must have reached 0
* and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
* values i.e. +/- 1, and d now contains +/- the modular inverse. */
#ifdef VERIFY
/* g == 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &SECP256K1_SIGNED30_ONE, 0) == 0);
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &SECP256K1_SIGNED30_ONE, -1) == 0 ||
secp256k1_modinv32_mul_cmp_30(&f, 9, &SECP256K1_SIGNED30_ONE, 1) == 0 ||
(secp256k1_modinv32_mul_cmp_30(x, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) == 0 ||
secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) == 0)));
#endif
/* Optionally negate d, normalize to [0,modulus), and return it. */
secp256k1_modinv32_normalize_30(&d, f.v[8], modinfo);
*x = d;
}
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */
static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
/* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
secp256k1_modinv32_signed30 d = {{0, 0, 0, 0, 0, 0, 0, 0, 0}};
secp256k1_modinv32_signed30 e = {{1, 0, 0, 0, 0, 0, 0, 0, 0}};
secp256k1_modinv32_signed30 f = modinfo->modulus;
secp256k1_modinv32_signed30 g = *x;
#ifdef VERIFY
int i = 0;
#endif
int j, len = 9;
int32_t eta = -1; /* eta = -delta; delta is initially 1 (faster for the variable-time code) */
int32_t cond, fn, gn;
/* Do iterations of 30 divsteps each until g=0. */
while (1) {
/* Compute transition matrix and new eta after 30 divsteps. */
secp256k1_modinv32_trans2x2 t;
eta = secp256k1_modinv32_divsteps_30_var(eta, f.v[0], g.v[0], &t);
/* Update d,e using that transition matrix. */
secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t);
/* If the bottom limb of g is 0, there is a chance g=0. */
if (g.v[0] == 0) {
cond = 0;
/* Check if all other limbs are also 0. */
for (j = 1; j < len; ++j) {
cond |= g.v[j];
}
/* If so, we're done. */
if (cond == 0) break;
}
/* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */
fn = f.v[len - 1];
gn = g.v[len - 1];
cond = ((int32_t)len - 2) >> 31;
cond |= fn ^ (fn >> 31);
cond |= gn ^ (gn >> 31);
/* If so, reduce length, propagating the sign of f and g's top limb into the one below. */
if (cond == 0) {
f.v[len - 2] |= (uint32_t)fn << 30;
g.v[len - 2] |= (uint32_t)gn << 30;
--len;
}
#ifdef VERIFY
VERIFY_CHECK(++i < 25); /* We should never need more than 25*30 = 750 divsteps */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
* the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
#ifdef VERIFY
/* g == 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &SECP256K1_SIGNED30_ONE, 0) == 0);
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &SECP256K1_SIGNED30_ONE, -1) == 0 ||
secp256k1_modinv32_mul_cmp_30(&f, len, &SECP256K1_SIGNED30_ONE, 1) == 0 ||
(secp256k1_modinv32_mul_cmp_30(x, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) == 0 ||
secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) == 0)));
#endif
/* Optionally negate d, normalize to [0,modulus), and return it. */
secp256k1_modinv32_normalize_30(&d, f.v[len - 1], modinfo);
*x = d;
}
/* Do up to 50 iterations of 30 posdivsteps (up to 1500 steps; more is extremely rare) each until f=1.
* In VERIFY mode use a lower number of iterations (750, close to the median 756), so failure actually occurs. */
#ifdef VERIFY
#define JACOBI32_ITERATIONS 25
#else
#define JACOBI32_ITERATIONS 50
#endif
/* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1. */
static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
/* Start with f=modulus, g=x, eta=-1. */
secp256k1_modinv32_signed30 f = modinfo->modulus;
secp256k1_modinv32_signed30 g = *x;
int j, len = 9;
int32_t eta = -1; /* eta = -delta; delta is initially 1 */
int32_t cond, fn, gn;
int jac = 0;
int count;
/* The input limbs must all be non-negative. */
VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0 && g.v[5] >= 0 && g.v[6] >= 0 && g.v[7] >= 0 && g.v[8] >= 0);
/* If x > 0, then if the loop below converges, it converges to f=g=gcd(x,modulus). Since we
* require that gcd(x,modulus)=1 and modulus>=3, x cannot be 0. Thus, we must reach f=1 (or
* time out). */
VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4] | g.v[5] | g.v[6] | g.v[7] | g.v[8]) != 0);
for (count = 0; count < JACOBI32_ITERATIONS; ++count) {
/* Compute transition matrix and new eta after 30 posdivsteps. */
secp256k1_modinv32_trans2x2 t;
eta = secp256k1_modinv32_posdivsteps_30_var(eta, f.v[0] | ((uint32_t)f.v[1] << 30), g.v[0] | ((uint32_t)g.v[1] << 30), &t, &jac);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t);
/* If the bottom limb of f is 1, there is a chance that f=1. */
if (f.v[0] == 1) {
cond = 0;
/* Check if the other limbs are also 0. */
for (j = 1; j < len; ++j) {
cond |= f.v[j];
}
/* If so, we're done. If f=1, the Jacobi symbol (g | f)=1. */
if (cond == 0) return 1 - 2*(jac & 1);
}
/* Determine if len>1 and limb (len-1) of both f and g is 0. */
fn = f.v[len - 1];
gn = g.v[len - 1];
cond = ((int32_t)len - 2) >> 31;
cond |= fn;
cond |= gn;
/* If so, reduce length. */
if (cond == 0) --len;
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* The loop failed to converge to f=g after 1500 iterations. Return 0, indicating unknown result. */
return 0;
}
#endif /* SECP256K1_MODINV32_IMPL_H */

View File

@ -0,0 +1,47 @@
/***********************************************************************
* Copyright (c) 2020 Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODINV64_H
#define SECP256K1_MODINV64_H
#include "util.h"
#ifndef SECP256K1_WIDEMUL_INT128
#error "modinv64 requires 128-bit wide multiplication support"
#endif
/* A signed 62-bit limb representation of integers.
*
* Its value is sum(v[i] * 2^(62*i), i=0..4). */
typedef struct {
int64_t v[5];
} secp256k1_modinv64_signed62;
typedef struct {
/* The modulus in signed62 notation, must be odd and in [3, 2^256]. */
secp256k1_modinv64_signed62 modulus;
/* modulus^{-1} mod 2^62 */
uint64_t modulus_inv62;
} secp256k1_modinv64_modinfo;
/* Replace x with its modular inverse mod modinfo->modulus. x must be in range [0, modulus).
* If x is zero, the result will be zero as well. If not, the inverse must exist (i.e., the gcd of
* x and modulus must be 1). These rules are automatically satisfied if the modulus is prime.
*
* On output, all of x's limbs will be in [0, 2^62).
*/
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo);
/* Same as secp256k1_modinv64_var, but constant time in x (not in the modulus). */
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo);
/* Compute the Jacobi symbol for (x | modinfo->modulus). x must be coprime with modulus (and thus
* cannot be 0, as modulus >= 3). All limbs of x must be non-negative. Returns 0 if the result
* cannot be computed. */
static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo);
#endif /* SECP256K1_MODINV64_H */

View File

@ -0,0 +1,794 @@
/***********************************************************************
* Copyright (c) 2020 Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODINV64_IMPL_H
#define SECP256K1_MODINV64_IMPL_H
#include "int128.h"
#include "modinv64.h"
/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
* modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
*
* For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
* implementation for N=62, using 62-bit signed limbs represented as int64_t.
*/
/* Data type for transition matrices (see section 3 of explanation).
*
* t = [ u v ]
* [ q r ]
*/
typedef struct {
int64_t u, v, q, r;
} secp256k1_modinv64_trans2x2;
#ifdef VERIFY
/* Helper function to compute the absolute value of an int64_t.
* (we don't use abs/labs/llabs as it depends on the int sizes). */
static int64_t secp256k1_modinv64_abs(int64_t v) {
VERIFY_CHECK(v > INT64_MIN);
if (v < 0) return -v;
return v;
}
static const secp256k1_modinv64_signed62 SECP256K1_SIGNED62_ONE = {{1}};
/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^62). */
static void secp256k1_modinv64_mul_62(secp256k1_modinv64_signed62 *r, const secp256k1_modinv64_signed62 *a, int alen, int64_t factor) {
const uint64_t M62 = UINT64_MAX >> 2;
secp256k1_int128 c, d;
int i;
secp256k1_i128_from_i64(&c, 0);
for (i = 0; i < 4; ++i) {
if (i < alen) secp256k1_i128_accum_mul(&c, a->v[i], factor);
r->v[i] = secp256k1_i128_to_u64(&c) & M62; secp256k1_i128_rshift(&c, 62);
}
if (4 < alen) secp256k1_i128_accum_mul(&c, a->v[4], factor);
secp256k1_i128_from_i64(&d, secp256k1_i128_to_i64(&c));
VERIFY_CHECK(secp256k1_i128_eq_var(&c, &d));
r->v[4] = secp256k1_i128_to_i64(&c);
}
/* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A has alen limbs; b has 5. */
static int secp256k1_modinv64_mul_cmp_62(const secp256k1_modinv64_signed62 *a, int alen, const secp256k1_modinv64_signed62 *b, int64_t factor) {
int i;
secp256k1_modinv64_signed62 am, bm;
secp256k1_modinv64_mul_62(&am, a, alen, 1); /* Normalize all but the top limb of a. */
secp256k1_modinv64_mul_62(&bm, b, 5, factor);
for (i = 0; i < 4; ++i) {
/* Verify that all but the top limb of a and b are normalized. */
VERIFY_CHECK(am.v[i] >> 62 == 0);
VERIFY_CHECK(bm.v[i] >> 62 == 0);
}
for (i = 4; i >= 0; --i) {
if (am.v[i] < bm.v[i]) return -1;
if (am.v[i] > bm.v[i]) return 1;
}
return 0;
}
/* Check if the determinant of t is equal to 1 << n. If abs, check if |det t| == 1 << n. */
static int secp256k1_modinv64_det_check_pow2(const secp256k1_modinv64_trans2x2 *t, unsigned int n, int abs) {
secp256k1_int128 a;
secp256k1_i128_det(&a, t->u, t->v, t->q, t->r);
if (secp256k1_i128_check_pow2(&a, n, 1)) return 1;
if (abs && secp256k1_i128_check_pow2(&a, n, -1)) return 1;
return 0;
}
#endif
/* Take as input a signed62 number in range (-2*modulus,modulus), and add a multiple of the modulus
* to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
* process. The input must have limbs in range (-2^62,2^62). The output will have limbs in range
* [0,2^62). */
static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int64_t sign, const secp256k1_modinv64_modinfo *modinfo) {
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4];
volatile int64_t cond_add, cond_negate;
#ifdef VERIFY
/* Verify that all limbs are in range (-2^62,2^62). */
int i;
for (i = 0; i < 5; ++i) {
VERIFY_CHECK(r->v[i] >= -M62);
VERIFY_CHECK(r->v[i] <= M62);
}
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, -2) > 0); /* r > -2*modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
#endif
/* In a first step, add the modulus if the input is negative, and then negate if requested.
* This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
* limbs are in range (-2^62,2^62), this cannot overflow an int64_t. Note that the right
* shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
* indeed the behavior of the right shift operator). */
cond_add = r4 >> 63;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
cond_negate = sign >> 63;
r0 = (r0 ^ cond_negate) - cond_negate;
r1 = (r1 ^ cond_negate) - cond_negate;
r2 = (r2 ^ cond_negate) - cond_negate;
r3 = (r3 ^ cond_negate) - cond_negate;
r4 = (r4 ^ cond_negate) - cond_negate;
/* Propagate the top bits, to bring limbs back to range (-2^62,2^62). */
r1 += r0 >> 62; r0 &= M62;
r2 += r1 >> 62; r1 &= M62;
r3 += r2 >> 62; r2 &= M62;
r4 += r3 >> 62; r3 &= M62;
/* In a second step add the modulus again if the result is still negative, bringing
* r to range [0,modulus). */
cond_add = r4 >> 63;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
/* And propagate again. */
r1 += r0 >> 62; r0 &= M62;
r2 += r1 >> 62; r1 &= M62;
r3 += r2 >> 62; r2 &= M62;
r4 += r3 >> 62; r3 &= M62;
r->v[0] = r0;
r->v[1] = r1;
r->v[2] = r2;
r->v[3] = r3;
r->v[4] = r4;
#ifdef VERIFY
VERIFY_CHECK(r0 >> 62 == 0);
VERIFY_CHECK(r1 >> 62 == 0);
VERIFY_CHECK(r2 >> 62 == 0);
VERIFY_CHECK(r3 >> 62 == 0);
VERIFY_CHECK(r4 >> 62 == 0);
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 0) >= 0); /* r >= 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
#endif
}
/* Compute the transition matrix and eta for 59 divsteps (where zeta=-(delta+1/2)).
* Note that the transformation matrix is scaled by 2^62 and not 2^59.
*
* Input: zeta: initial zeta
* f0: bottom limb of initial f
* g0: bottom limb of initial g
* Output: t: transition matrix
* Return: final zeta
*
* Implements the divsteps_n_matrix function from the explanation.
*/
static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
/* u,v,q,r are the elements of the transformation matrix being built up,
* starting with the identity matrix times 8 (because the caller expects
* a result scaled by 2^62). Semantically they are signed integers
* in range [-2^62,2^62], but here represented as unsigned mod 2^64. This
* permits left shifting (which is UB for negative numbers). The range
* being inside [-2^63,2^63) means that casting to signed works correctly.
*/
uint64_t u = 8, v = 0, q = 0, r = 8;
volatile uint64_t c1, c2;
uint64_t mask1, mask2, f = f0, g = g0, x, y, z;
int i;
for (i = 3; i < 62; ++i) {
VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
VERIFY_CHECK((u * f0 + v * g0) == f << i);
VERIFY_CHECK((q * f0 + r * g0) == g << i);
/* Compute conditional masks for (zeta < 0) and for (g & 1). */
c1 = zeta >> 63;
mask1 = c1;
c2 = g & 1;
mask2 = -c2;
/* Compute x,y,z, conditionally negated versions of f,u,v. */
x = (f ^ mask1) - mask1;
y = (u ^ mask1) - mask1;
z = (v ^ mask1) - mask1;
/* Conditionally add x,y,z to g,q,r. */
g += x & mask2;
q += y & mask2;
r += z & mask2;
/* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */
mask1 &= mask2;
/* Conditionally change zeta into -zeta-2 or zeta-1. */
zeta = (zeta ^ mask1) - 1;
/* Conditionally add g,q,r to f,u,v. */
f += g & mask1;
u += q & mask1;
v += r & mask1;
/* Shifts */
g >>= 1;
u <<= 1;
v <<= 1;
/* Bounds on zeta that follow from the bounds on iteration count (max 10*59 divsteps). */
VERIFY_CHECK(zeta >= -591 && zeta <= 591);
}
/* Return data in t and return value. */
t->u = (int64_t)u;
t->v = (int64_t)v;
t->q = (int64_t)q;
t->r = (int64_t)r;
#ifdef VERIFY
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2, the
* aggregate of 59 of them will have determinant 2^59. Multiplying with the initial
* 8*identity (which has determinant 2^6) means the overall outputs has determinant
* 2^65. */
VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 65, 0));
#endif
return zeta;
}
/* Compute the transition matrix and eta for 62 divsteps (variable time, eta=-delta).
*
* Input: eta: initial eta
* f0: bottom limb of initial f
* g0: bottom limb of initial g
* Output: t: transition matrix
* Return: final eta
*
* Implements the divsteps_n_matrix_var function from the explanation.
*/
static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
/* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */
uint64_t u = 1, v = 0, q = 0, r = 1;
uint64_t f = f0, g = g0, m;
uint32_t w;
int i = 62, limit, zeros;
for (;;) {
/* Use a sentinel bit to count zeros only up to i. */
zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i));
/* Perform zeros divsteps at once; they all just divide g by two. */
g >>= zeros;
u <<= zeros;
v <<= zeros;
eta -= zeros;
i -= zeros;
/* We're done once we've done 62 divsteps. */
if (i == 0) break;
VERIFY_CHECK((f & 1) == 1);
VERIFY_CHECK((g & 1) == 1);
VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
/* Bounds on eta that follow from the bounds on iteration count (max 12*62 divsteps). */
VERIFY_CHECK(eta >= -745 && eta <= 745);
/* If eta is negative, negate it and replace f,g with g,-f. */
if (eta < 0) {
uint64_t tmp;
eta = -eta;
tmp = f; f = g; g = -tmp;
tmp = u; u = q; q = -tmp;
tmp = v; v = r; r = -tmp;
/* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
* out (as we'd be done before that point), and no more than eta+1 can be done as its
* sign will flip again once that happens. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
VERIFY_CHECK(limit > 0 && limit <= 62);
/* m is a mask for the bottom min(limit, 6) bits. */
m = (UINT64_MAX >> (64 - limit)) & 63U;
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
* bits. */
w = (f * g * (f * f - 2)) & m;
} else {
/* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
* eta tends to be smaller here. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
VERIFY_CHECK(limit > 0 && limit <= 62);
/* m is a mask for the bottom min(limit, 4) bits. */
m = (UINT64_MAX >> (64 - limit)) & 15U;
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
* bits. */
w = f + (((f + 1) & 4) << 1);
w = (-w * g) & m;
}
g += f * w;
q += u * w;
r += v * w;
VERIFY_CHECK((g & m) == 0);
}
/* Return data in t and return value. */
t->u = (int64_t)u;
t->v = (int64_t)v;
t->q = (int64_t)q;
t->r = (int64_t)r;
#ifdef VERIFY
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2, the
* aggregate of 62 of them will have determinant 2^62. */
VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 62, 0));
#endif
return eta;
}
/* Compute the transition matrix and eta for 62 posdivsteps (variable time, eta=-delta), and keeps track
* of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^64 rather than 2^62, because
* Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2).
*
* Input: eta: initial eta
* f0: bottom limb of initial f
* g0: bottom limb of initial g
* Output: t: transition matrix
* Input/Output: (*jacp & 1) is bitflipped if and only if the Jacobi symbol of (f | g) changes sign
* by applying the returned transformation matrix to it. The other bits of *jacp may
* change, but are meaningless.
* Return: final eta
*/
static int64_t secp256k1_modinv64_posdivsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t, int *jacp) {
/* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */
uint64_t u = 1, v = 0, q = 0, r = 1;
uint64_t f = f0, g = g0, m;
uint32_t w;
int i = 62, limit, zeros;
int jac = *jacp;
for (;;) {
/* Use a sentinel bit to count zeros only up to i. */
zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i));
/* Perform zeros divsteps at once; they all just divide g by two. */
g >>= zeros;
u <<= zeros;
v <<= zeros;
eta -= zeros;
i -= zeros;
/* Update the bottom bit of jac: when dividing g by an odd power of 2,
* if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */
jac ^= (zeros & ((f >> 1) ^ (f >> 2)));
/* We're done once we've done 62 posdivsteps. */
if (i == 0) break;
VERIFY_CHECK((f & 1) == 1);
VERIFY_CHECK((g & 1) == 1);
VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
/* If eta is negative, negate it and replace f,g with g,f. */
if (eta < 0) {
uint64_t tmp;
eta = -eta;
tmp = f; f = g; g = tmp;
tmp = u; u = q; q = tmp;
tmp = v; v = r; r = tmp;
/* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign
* if both f and g are 3 mod 4. */
jac ^= ((f & g) >> 1);
/* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
* out (as we'd be done before that point), and no more than eta+1 can be done as its
* sign will flip again once that happens. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
VERIFY_CHECK(limit > 0 && limit <= 62);
/* m is a mask for the bottom min(limit, 6) bits. */
m = (UINT64_MAX >> (64 - limit)) & 63U;
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
* bits. */
w = (f * g * (f * f - 2)) & m;
} else {
/* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
* eta tends to be smaller here. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
VERIFY_CHECK(limit > 0 && limit <= 62);
/* m is a mask for the bottom min(limit, 4) bits. */
m = (UINT64_MAX >> (64 - limit)) & 15U;
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
* bits. */
w = f + (((f + 1) & 4) << 1);
w = (-w * g) & m;
}
g += f * w;
q += u * w;
r += v * w;
VERIFY_CHECK((g & m) == 0);
}
/* Return data in t and return value. */
t->u = (int64_t)u;
t->v = (int64_t)v;
t->q = (int64_t)q;
t->r = (int64_t)r;
#ifdef VERIFY
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
* the aggregate of 62 of them will have determinant 2^62 or -2^62. */
VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 62, 1));
#endif
*jacp = jac;
return eta;
}
/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62.
*
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
* (-2^62,2^62).
*
* This implements the update_de function from the explanation.
*/
static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp256k1_modinv64_signed62 *e, const secp256k1_modinv64_trans2x2 *t, const secp256k1_modinv64_modinfo* modinfo) {
const uint64_t M62 = UINT64_MAX >> 2;
const int64_t d0 = d->v[0], d1 = d->v[1], d2 = d->v[2], d3 = d->v[3], d4 = d->v[4];
const int64_t e0 = e->v[0], e1 = e->v[1], e2 = e->v[2], e3 = e->v[3], e4 = e->v[4];
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
int64_t md, me, sd, se;
secp256k1_int128 cd, ce;
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
VERIFY_CHECK(secp256k1_modinv64_abs(u) <= (((int64_t)1 << 62) - secp256k1_modinv64_abs(v))); /* |u|+|v| <= 2^62 */
VERIFY_CHECK(secp256k1_modinv64_abs(q) <= (((int64_t)1 << 62) - secp256k1_modinv64_abs(r))); /* |q|+|r| <= 2^62 */
#endif
/* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
sd = d4 >> 63;
se = e4 >> 63;
md = (u & sd) + (v & se);
me = (q & sd) + (r & se);
/* Begin computing t*[d,e]. */
secp256k1_i128_mul(&cd, u, d0);
secp256k1_i128_accum_mul(&cd, v, e0);
secp256k1_i128_mul(&ce, q, d0);
secp256k1_i128_accum_mul(&ce, r, e0);
/* Correct md,me so that t*[d,e]+modulus*[md,me] has 62 zero bottom bits. */
md -= (modinfo->modulus_inv62 * secp256k1_i128_to_u64(&cd) + md) & M62;
me -= (modinfo->modulus_inv62 * secp256k1_i128_to_u64(&ce) + me) & M62;
/* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[0], md);
secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[0], me);
/* Verify that the low 62 bits of the computation are indeed zero, and then throw them away. */
VERIFY_CHECK((secp256k1_i128_to_u64(&cd) & M62) == 0); secp256k1_i128_rshift(&cd, 62);
VERIFY_CHECK((secp256k1_i128_to_u64(&ce) & M62) == 0); secp256k1_i128_rshift(&ce, 62);
/* Compute limb 1 of t*[d,e]+modulus*[md,me], and store it as output limb 0 (= down shift). */
secp256k1_i128_accum_mul(&cd, u, d1);
secp256k1_i128_accum_mul(&cd, v, e1);
secp256k1_i128_accum_mul(&ce, q, d1);
secp256k1_i128_accum_mul(&ce, r, e1);
if (modinfo->modulus.v[1]) { /* Optimize for the case where limb of modulus is zero. */
secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[1], md);
secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[1], me);
}
d->v[0] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
e->v[0] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
/* Compute limb 2 of t*[d,e]+modulus*[md,me], and store it as output limb 1. */
secp256k1_i128_accum_mul(&cd, u, d2);
secp256k1_i128_accum_mul(&cd, v, e2);
secp256k1_i128_accum_mul(&ce, q, d2);
secp256k1_i128_accum_mul(&ce, r, e2);
if (modinfo->modulus.v[2]) { /* Optimize for the case where limb of modulus is zero. */
secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[2], md);
secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[2], me);
}
d->v[1] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
e->v[1] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
/* Compute limb 3 of t*[d,e]+modulus*[md,me], and store it as output limb 2. */
secp256k1_i128_accum_mul(&cd, u, d3);
secp256k1_i128_accum_mul(&cd, v, e3);
secp256k1_i128_accum_mul(&ce, q, d3);
secp256k1_i128_accum_mul(&ce, r, e3);
if (modinfo->modulus.v[3]) { /* Optimize for the case where limb of modulus is zero. */
secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[3], md);
secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[3], me);
}
d->v[2] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
e->v[2] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
/* Compute limb 4 of t*[d,e]+modulus*[md,me], and store it as output limb 3. */
secp256k1_i128_accum_mul(&cd, u, d4);
secp256k1_i128_accum_mul(&cd, v, e4);
secp256k1_i128_accum_mul(&ce, q, d4);
secp256k1_i128_accum_mul(&ce, r, e4);
secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[4], md);
secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[4], me);
d->v[3] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
e->v[3] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
/* What remains is limb 5 of t*[d,e]+modulus*[md,me]; store it as output limb 4. */
d->v[4] = secp256k1_i128_to_i64(&cd);
e->v[4] = secp256k1_i128_to_i64(&ce);
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
#endif
}
/* Compute (t/2^62) * [f, g], where t is a transition matrix scaled by 2^62.
*
* This implements the update_fg function from the explanation.
*/
static void secp256k1_modinv64_update_fg_62(secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) {
const uint64_t M62 = UINT64_MAX >> 2;
const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4];
const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4];
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
secp256k1_int128 cf, cg;
/* Start computing t*[f,g]. */
secp256k1_i128_mul(&cf, u, f0);
secp256k1_i128_accum_mul(&cf, v, g0);
secp256k1_i128_mul(&cg, q, f0);
secp256k1_i128_accum_mul(&cg, r, g0);
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
VERIFY_CHECK((secp256k1_i128_to_u64(&cf) & M62) == 0); secp256k1_i128_rshift(&cf, 62);
VERIFY_CHECK((secp256k1_i128_to_u64(&cg) & M62) == 0); secp256k1_i128_rshift(&cg, 62);
/* Compute limb 1 of t*[f,g], and store it as output limb 0 (= down shift). */
secp256k1_i128_accum_mul(&cf, u, f1);
secp256k1_i128_accum_mul(&cf, v, g1);
secp256k1_i128_accum_mul(&cg, q, f1);
secp256k1_i128_accum_mul(&cg, r, g1);
f->v[0] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
g->v[0] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
/* Compute limb 2 of t*[f,g], and store it as output limb 1. */
secp256k1_i128_accum_mul(&cf, u, f2);
secp256k1_i128_accum_mul(&cf, v, g2);
secp256k1_i128_accum_mul(&cg, q, f2);
secp256k1_i128_accum_mul(&cg, r, g2);
f->v[1] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
g->v[1] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
/* Compute limb 3 of t*[f,g], and store it as output limb 2. */
secp256k1_i128_accum_mul(&cf, u, f3);
secp256k1_i128_accum_mul(&cf, v, g3);
secp256k1_i128_accum_mul(&cg, q, f3);
secp256k1_i128_accum_mul(&cg, r, g3);
f->v[2] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
g->v[2] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
/* Compute limb 4 of t*[f,g], and store it as output limb 3. */
secp256k1_i128_accum_mul(&cf, u, f4);
secp256k1_i128_accum_mul(&cf, v, g4);
secp256k1_i128_accum_mul(&cg, q, f4);
secp256k1_i128_accum_mul(&cg, r, g4);
f->v[3] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
g->v[3] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
/* What remains is limb 5 of t*[f,g]; store it as output limb 4. */
f->v[4] = secp256k1_i128_to_i64(&cf);
g->v[4] = secp256k1_i128_to_i64(&cg);
}
/* Compute (t/2^62) * [f, g], where t is a transition matrix for 62 divsteps.
*
* Version that operates on a variable number of limbs in f and g.
*
* This implements the update_fg function from the explanation.
*/
static void secp256k1_modinv64_update_fg_62_var(int len, secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) {
const uint64_t M62 = UINT64_MAX >> 2;
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
int64_t fi, gi;
secp256k1_int128 cf, cg;
int i;
VERIFY_CHECK(len > 0);
/* Start computing t*[f,g]. */
fi = f->v[0];
gi = g->v[0];
secp256k1_i128_mul(&cf, u, fi);
secp256k1_i128_accum_mul(&cf, v, gi);
secp256k1_i128_mul(&cg, q, fi);
secp256k1_i128_accum_mul(&cg, r, gi);
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
VERIFY_CHECK((secp256k1_i128_to_u64(&cf) & M62) == 0); secp256k1_i128_rshift(&cf, 62);
VERIFY_CHECK((secp256k1_i128_to_u64(&cg) & M62) == 0); secp256k1_i128_rshift(&cg, 62);
/* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
* down by 62 bits). */
for (i = 1; i < len; ++i) {
fi = f->v[i];
gi = g->v[i];
secp256k1_i128_accum_mul(&cf, u, fi);
secp256k1_i128_accum_mul(&cf, v, gi);
secp256k1_i128_accum_mul(&cg, q, fi);
secp256k1_i128_accum_mul(&cg, r, gi);
f->v[i - 1] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
g->v[i - 1] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
}
/* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */
f->v[len - 1] = secp256k1_i128_to_i64(&cf);
g->v[len - 1] = secp256k1_i128_to_i64(&cg);
}
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
/* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
secp256k1_modinv64_signed62 f = modinfo->modulus;
secp256k1_modinv64_signed62 g = *x;
int i;
int64_t zeta = -1; /* zeta = -(delta+1/2); delta starts at 1/2. */
/* Do 10 iterations of 59 divsteps each = 590 divsteps. This suffices for 256-bit inputs. */
for (i = 0; i < 10; ++i) {
/* Compute transition matrix and new zeta after 59 divsteps. */
secp256k1_modinv64_trans2x2 t;
zeta = secp256k1_modinv64_divsteps_59(zeta, f.v[0], g.v[0], &t);
/* Update d,e using that transition matrix. */
secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
secp256k1_modinv64_update_fg_62(&f, &g, &t);
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* At this point sufficient iterations have been performed that g must have reached 0
* and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
* values i.e. +/- 1, and d now contains +/- the modular inverse. */
#ifdef VERIFY
/* g == 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &SECP256K1_SIGNED62_ONE, 0) == 0);
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
(secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) == 0 ||
secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) == 0)));
#endif
/* Optionally negate d, normalize to [0,modulus), and return it. */
secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo);
*x = d;
}
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
/* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
secp256k1_modinv64_signed62 f = modinfo->modulus;
secp256k1_modinv64_signed62 g = *x;
#ifdef VERIFY
int i = 0;
#endif
int j, len = 5;
int64_t eta = -1; /* eta = -delta; delta is initially 1 */
int64_t cond, fn, gn;
/* Do iterations of 62 divsteps each until g=0. */
while (1) {
/* Compute transition matrix and new eta after 62 divsteps. */
secp256k1_modinv64_trans2x2 t;
eta = secp256k1_modinv64_divsteps_62_var(eta, f.v[0], g.v[0], &t);
/* Update d,e using that transition matrix. */
secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t);
/* If the bottom limb of g is zero, there is a chance that g=0. */
if (g.v[0] == 0) {
cond = 0;
/* Check if the other limbs are also 0. */
for (j = 1; j < len; ++j) {
cond |= g.v[j];
}
/* If so, we're done. */
if (cond == 0) break;
}
/* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */
fn = f.v[len - 1];
gn = g.v[len - 1];
cond = ((int64_t)len - 2) >> 63;
cond |= fn ^ (fn >> 63);
cond |= gn ^ (gn >> 63);
/* If so, reduce length, propagating the sign of f and g's top limb into the one below. */
if (cond == 0) {
f.v[len - 2] |= (uint64_t)fn << 62;
g.v[len - 2] |= (uint64_t)gn << 62;
--len;
}
#ifdef VERIFY
VERIFY_CHECK(++i < 12); /* We should never need more than 12*62 = 744 divsteps */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
* the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
#ifdef VERIFY
/* g == 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &SECP256K1_SIGNED62_ONE, 0) == 0);
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
(secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) == 0 ||
secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) == 0)));
#endif
/* Optionally negate d, normalize to [0,modulus), and return it. */
secp256k1_modinv64_normalize_62(&d, f.v[len - 1], modinfo);
*x = d;
}
/* Do up to 25 iterations of 62 posdivsteps (up to 1550 steps; more is extremely rare) each until f=1.
* In VERIFY mode use a lower number of iterations (744, close to the median 756), so failure actually occurs. */
#ifdef VERIFY
#define JACOBI64_ITERATIONS 12
#else
#define JACOBI64_ITERATIONS 25
#endif
/* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1. */
static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
/* Start with f=modulus, g=x, eta=-1. */
secp256k1_modinv64_signed62 f = modinfo->modulus;
secp256k1_modinv64_signed62 g = *x;
int j, len = 5;
int64_t eta = -1; /* eta = -delta; delta is initially 1 */
int64_t cond, fn, gn;
int jac = 0;
int count;
/* The input limbs must all be non-negative. */
VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0);
/* If x > 0, then if the loop below converges, it converges to f=g=gcd(x,modulus). Since we
* require that gcd(x,modulus)=1 and modulus>=3, x cannot be 0. Thus, we must reach f=1 (or
* time out). */
VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4]) != 0);
for (count = 0; count < JACOBI64_ITERATIONS; ++count) {
/* Compute transition matrix and new eta after 62 posdivsteps. */
secp256k1_modinv64_trans2x2 t;
eta = secp256k1_modinv64_posdivsteps_62_var(eta, f.v[0] | ((uint64_t)f.v[1] << 62), g.v[0] | ((uint64_t)g.v[1] << 62), &t, &jac);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t);
/* If the bottom limb of f is 1, there is a chance that f=1. */
if (f.v[0] == 1) {
cond = 0;
/* Check if the other limbs are also 0. */
for (j = 1; j < len; ++j) {
cond |= f.v[j];
}
/* If so, we're done. When f=1, the Jacobi symbol (g | f)=1. */
if (cond == 0) return 1 - 2*(jac & 1);
}
/* Determine if len>1 and limb (len-1) of both f and g is 0. */
fn = f.v[len - 1];
gn = g.v[len - 1];
cond = ((int64_t)len - 2) >> 63;
cond |= fn;
cond |= gn;
/* If so, reduce length. */
if (cond == 0) --len;
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* The loop failed to converge to f=g after 1550 iterations. Return 0, indicating unknown result. */
return 0;
}
#endif /* SECP256K1_MODINV64_IMPL_H */

View File

@ -0,0 +1,4 @@
include_HEADERS += include/secp256k1_ecdh.h
noinst_HEADERS += src/modules/ecdh/main_impl.h
noinst_HEADERS += src/modules/ecdh/tests_impl.h
noinst_HEADERS += src/modules/ecdh/bench_impl.h

View File

@ -0,0 +1,57 @@
/***********************************************************************
* Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_ECDH_BENCH_H
#define SECP256K1_MODULE_ECDH_BENCH_H
#include "../../../include/secp256k1_ecdh.h"
typedef struct {
secp256k1_context *ctx;
secp256k1_pubkey point;
unsigned char scalar[32];
} bench_ecdh_data;
static void bench_ecdh_setup(void* arg) {
int i;
bench_ecdh_data *data = (bench_ecdh_data*)arg;
const unsigned char point[] = {
0x03,
0x54, 0x94, 0xc1, 0x5d, 0x32, 0x09, 0x97, 0x06,
0xc2, 0x39, 0x5f, 0x94, 0x34, 0x87, 0x45, 0xfd,
0x75, 0x7c, 0xe3, 0x0e, 0x4e, 0x8c, 0x90, 0xfb,
0xa2, 0xba, 0xd1, 0x84, 0xf8, 0x83, 0xc6, 0x9f
};
for (i = 0; i < 32; i++) {
data->scalar[i] = i + 1;
}
CHECK(secp256k1_ec_pubkey_parse(data->ctx, &data->point, point, sizeof(point)) == 1);
}
static void bench_ecdh(void* arg, int iters) {
int i;
unsigned char res[32];
bench_ecdh_data *data = (bench_ecdh_data*)arg;
for (i = 0; i < iters; i++) {
CHECK(secp256k1_ecdh(data->ctx, res, &data->point, data->scalar, NULL, NULL) == 1);
}
}
static void run_ecdh_bench(int iters, int argc, char** argv) {
bench_ecdh_data data;
int d = argc == 1;
/* create a context with no capabilities */
data.ctx = secp256k1_context_create(SECP256K1_FLAGS_TYPE_CONTEXT);
if (d || have_flag(argc, argv, "ecdh")) run_benchmark("ecdh", bench_ecdh, bench_ecdh_setup, NULL, &data, 10, iters);
secp256k1_context_destroy(data.ctx);
}
#endif /* SECP256K1_MODULE_ECDH_BENCH_H */

View File

@ -0,0 +1,71 @@
/***********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_ECDH_MAIN_H
#define SECP256K1_MODULE_ECDH_MAIN_H
#include "../../../include/secp256k1_ecdh.h"
#include "../../ecmult_const_impl.h"
static int ecdh_hash_function_sha256(unsigned char *output, const unsigned char *x32, const unsigned char *y32, void *data) {
unsigned char version = (y32[31] & 0x01) | 0x02;
secp256k1_sha256 sha;
(void)data;
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, &version, 1);
secp256k1_sha256_write(&sha, x32, 32);
secp256k1_sha256_finalize(&sha, output);
return 1;
}
const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_sha256 = ecdh_hash_function_sha256;
const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_default = ecdh_hash_function_sha256;
int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *output, const secp256k1_pubkey *point, const unsigned char *scalar, secp256k1_ecdh_hash_function hashfp, void *data) {
int ret = 0;
int overflow = 0;
secp256k1_gej res;
secp256k1_ge pt;
secp256k1_scalar s;
unsigned char x[32];
unsigned char y[32];
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output != NULL);
ARG_CHECK(point != NULL);
ARG_CHECK(scalar != NULL);
if (hashfp == NULL) {
hashfp = secp256k1_ecdh_hash_function_default;
}
secp256k1_pubkey_load(ctx, &pt, point);
secp256k1_scalar_set_b32(&s, scalar, &overflow);
overflow |= secp256k1_scalar_is_zero(&s);
secp256k1_scalar_cmov(&s, &secp256k1_scalar_one, overflow);
secp256k1_ecmult_const(&res, &pt, &s);
secp256k1_ge_set_gej(&pt, &res);
/* Compute a hash of the point */
secp256k1_fe_normalize(&pt.x);
secp256k1_fe_normalize(&pt.y);
secp256k1_fe_get_b32(x, &pt.x);
secp256k1_fe_get_b32(y, &pt.y);
ret = hashfp(output, x, y, data);
memset(x, 0, 32);
memset(y, 0, 32);
secp256k1_scalar_clear(&s);
return !!ret & !overflow;
}
#endif /* SECP256K1_MODULE_ECDH_MAIN_H */

View File

@ -0,0 +1,165 @@
/***********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_ECDH_TESTS_H
#define SECP256K1_MODULE_ECDH_TESTS_H
static int ecdh_hash_function_test_fail(unsigned char *output, const unsigned char *x, const unsigned char *y, void *data) {
(void)output;
(void)x;
(void)y;
(void)data;
return 0;
}
static int ecdh_hash_function_custom(unsigned char *output, const unsigned char *x, const unsigned char *y, void *data) {
(void)data;
/* Save x and y as uncompressed public key */
output[0] = 0x04;
memcpy(output + 1, x, 32);
memcpy(output + 33, y, 32);
return 1;
}
static void test_ecdh_api(void) {
/* Setup context that just counts errors */
secp256k1_context *tctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
secp256k1_pubkey point;
unsigned char res[32];
unsigned char s_one[32] = { 0 };
int32_t ecount = 0;
s_one[31] = 1;
secp256k1_context_set_error_callback(tctx, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(tctx, counting_illegal_callback_fn, &ecount);
CHECK(secp256k1_ec_pubkey_create(tctx, &point, s_one) == 1);
/* Check all NULLs are detected */
CHECK(secp256k1_ecdh(tctx, res, &point, s_one, NULL, NULL) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_ecdh(tctx, NULL, &point, s_one, NULL, NULL) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_ecdh(tctx, res, NULL, s_one, NULL, NULL) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_ecdh(tctx, res, &point, NULL, NULL, NULL) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_ecdh(tctx, res, &point, s_one, NULL, NULL) == 1);
CHECK(ecount == 3);
/* Cleanup */
secp256k1_context_destroy(tctx);
}
static void test_ecdh_generator_basepoint(void) {
unsigned char s_one[32] = { 0 };
secp256k1_pubkey point[2];
int i;
s_one[31] = 1;
/* Check against pubkey creation when the basepoint is the generator */
for (i = 0; i < 2 * COUNT; ++i) {
secp256k1_sha256 sha;
unsigned char s_b32[32];
unsigned char output_ecdh[65];
unsigned char output_ser[32];
unsigned char point_ser[65];
size_t point_ser_len = sizeof(point_ser);
secp256k1_scalar s;
random_scalar_order(&s);
secp256k1_scalar_get_b32(s_b32, &s);
CHECK(secp256k1_ec_pubkey_create(CTX, &point[0], s_one) == 1);
CHECK(secp256k1_ec_pubkey_create(CTX, &point[1], s_b32) == 1);
/* compute using ECDH function with custom hash function */
CHECK(secp256k1_ecdh(CTX, output_ecdh, &point[0], s_b32, ecdh_hash_function_custom, NULL) == 1);
/* compute "explicitly" */
CHECK(secp256k1_ec_pubkey_serialize(CTX, point_ser, &point_ser_len, &point[1], SECP256K1_EC_UNCOMPRESSED) == 1);
/* compare */
CHECK(secp256k1_memcmp_var(output_ecdh, point_ser, 65) == 0);
/* compute using ECDH function with default hash function */
CHECK(secp256k1_ecdh(CTX, output_ecdh, &point[0], s_b32, NULL, NULL) == 1);
/* compute "explicitly" */
CHECK(secp256k1_ec_pubkey_serialize(CTX, point_ser, &point_ser_len, &point[1], SECP256K1_EC_COMPRESSED) == 1);
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, point_ser, point_ser_len);
secp256k1_sha256_finalize(&sha, output_ser);
/* compare */
CHECK(secp256k1_memcmp_var(output_ecdh, output_ser, 32) == 0);
}
}
static void test_bad_scalar(void) {
unsigned char s_zero[32] = { 0 };
unsigned char s_overflow[32] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41
};
unsigned char s_rand[32] = { 0 };
unsigned char output[32];
secp256k1_scalar rand;
secp256k1_pubkey point;
/* Create random point */
random_scalar_order(&rand);
secp256k1_scalar_get_b32(s_rand, &rand);
CHECK(secp256k1_ec_pubkey_create(CTX, &point, s_rand) == 1);
/* Try to multiply it by bad values */
CHECK(secp256k1_ecdh(CTX, output, &point, s_zero, NULL, NULL) == 0);
CHECK(secp256k1_ecdh(CTX, output, &point, s_overflow, NULL, NULL) == 0);
/* ...and a good one */
s_overflow[31] -= 1;
CHECK(secp256k1_ecdh(CTX, output, &point, s_overflow, NULL, NULL) == 1);
/* Hash function failure results in ecdh failure */
CHECK(secp256k1_ecdh(CTX, output, &point, s_overflow, ecdh_hash_function_test_fail, NULL) == 0);
}
/** Test that ECDH(sG, 1/s) == ECDH((1/s)G, s) == ECDH(G, 1) for a few random s. */
static void test_result_basepoint(void) {
secp256k1_pubkey point;
secp256k1_scalar rand;
unsigned char s[32];
unsigned char s_inv[32];
unsigned char out[32];
unsigned char out_inv[32];
unsigned char out_base[32];
int i;
unsigned char s_one[32] = { 0 };
s_one[31] = 1;
CHECK(secp256k1_ec_pubkey_create(CTX, &point, s_one) == 1);
CHECK(secp256k1_ecdh(CTX, out_base, &point, s_one, NULL, NULL) == 1);
for (i = 0; i < 2 * COUNT; i++) {
random_scalar_order(&rand);
secp256k1_scalar_get_b32(s, &rand);
secp256k1_scalar_inverse(&rand, &rand);
secp256k1_scalar_get_b32(s_inv, &rand);
CHECK(secp256k1_ec_pubkey_create(CTX, &point, s) == 1);
CHECK(secp256k1_ecdh(CTX, out, &point, s_inv, NULL, NULL) == 1);
CHECK(secp256k1_memcmp_var(out, out_base, 32) == 0);
CHECK(secp256k1_ec_pubkey_create(CTX, &point, s_inv) == 1);
CHECK(secp256k1_ecdh(CTX, out_inv, &point, s, NULL, NULL) == 1);
CHECK(secp256k1_memcmp_var(out_inv, out_base, 32) == 0);
}
}
static void run_ecdh_tests(void) {
test_ecdh_api();
test_ecdh_generator_basepoint();
test_bad_scalar();
test_result_basepoint();
}
#endif /* SECP256K1_MODULE_ECDH_TESTS_H */

View File

@ -0,0 +1,4 @@
include_HEADERS += include/secp256k1_extrakeys.h
noinst_HEADERS += src/modules/extrakeys/tests_impl.h
noinst_HEADERS += src/modules/extrakeys/tests_exhaustive_impl.h
noinst_HEADERS += src/modules/extrakeys/main_impl.h

View File

@ -0,0 +1,285 @@
/***********************************************************************
* Copyright (c) 2020 Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_EXTRAKEYS_MAIN_H
#define SECP256K1_MODULE_EXTRAKEYS_MAIN_H
#include "../../../include/secp256k1.h"
#include "../../../include/secp256k1_extrakeys.h"
#include "../../util.h"
static SECP256K1_INLINE int secp256k1_xonly_pubkey_load(const secp256k1_context* ctx, secp256k1_ge *ge, const secp256k1_xonly_pubkey *pubkey) {
return secp256k1_pubkey_load(ctx, ge, (const secp256k1_pubkey *) pubkey);
}
static SECP256K1_INLINE void secp256k1_xonly_pubkey_save(secp256k1_xonly_pubkey *pubkey, secp256k1_ge *ge) {
secp256k1_pubkey_save((secp256k1_pubkey *) pubkey, ge);
}
int secp256k1_xonly_pubkey_parse(const secp256k1_context* ctx, secp256k1_xonly_pubkey *pubkey, const unsigned char *input32) {
secp256k1_ge pk;
secp256k1_fe x;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
ARG_CHECK(input32 != NULL);
if (!secp256k1_fe_set_b32_limit(&x, input32)) {
return 0;
}
if (!secp256k1_ge_set_xo_var(&pk, &x, 0)) {
return 0;
}
if (!secp256k1_ge_is_in_correct_subgroup(&pk)) {
return 0;
}
secp256k1_xonly_pubkey_save(pubkey, &pk);
return 1;
}
int secp256k1_xonly_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output32, const secp256k1_xonly_pubkey *pubkey) {
secp256k1_ge pk;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output32 != NULL);
memset(output32, 0, 32);
ARG_CHECK(pubkey != NULL);
if (!secp256k1_xonly_pubkey_load(ctx, &pk, pubkey)) {
return 0;
}
secp256k1_fe_get_b32(output32, &pk.x);
return 1;
}
int secp256k1_xonly_pubkey_cmp(const secp256k1_context* ctx, const secp256k1_xonly_pubkey* pk0, const secp256k1_xonly_pubkey* pk1) {
unsigned char out[2][32];
const secp256k1_xonly_pubkey* pk[2];
int i;
VERIFY_CHECK(ctx != NULL);
pk[0] = pk0; pk[1] = pk1;
for (i = 0; i < 2; i++) {
/* If the public key is NULL or invalid, xonly_pubkey_serialize will
* call the illegal_callback and return 0. In that case we will
* serialize the key as all zeros which is less than any valid public
* key. This results in consistent comparisons even if NULL or invalid
* pubkeys are involved and prevents edge cases such as sorting
* algorithms that use this function and do not terminate as a
* result. */
if (!secp256k1_xonly_pubkey_serialize(ctx, out[i], pk[i])) {
/* Note that xonly_pubkey_serialize should already set the output to
* zero in that case, but it's not guaranteed by the API, we can't
* test it and writing a VERIFY_CHECK is more complex than
* explicitly memsetting (again). */
memset(out[i], 0, sizeof(out[i]));
}
}
return secp256k1_memcmp_var(out[0], out[1], sizeof(out[1]));
}
/** Keeps a group element as is if it has an even Y and otherwise negates it.
* y_parity is set to 0 in the former case and to 1 in the latter case.
* Requires that the coordinates of r are normalized. */
static int secp256k1_extrakeys_ge_even_y(secp256k1_ge *r) {
int y_parity = 0;
VERIFY_CHECK(!secp256k1_ge_is_infinity(r));
if (secp256k1_fe_is_odd(&r->y)) {
secp256k1_fe_negate(&r->y, &r->y, 1);
y_parity = 1;
}
return y_parity;
}
int secp256k1_xonly_pubkey_from_pubkey(const secp256k1_context* ctx, secp256k1_xonly_pubkey *xonly_pubkey, int *pk_parity, const secp256k1_pubkey *pubkey) {
secp256k1_ge pk;
int tmp;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(xonly_pubkey != NULL);
ARG_CHECK(pubkey != NULL);
if (!secp256k1_pubkey_load(ctx, &pk, pubkey)) {
return 0;
}
tmp = secp256k1_extrakeys_ge_even_y(&pk);
if (pk_parity != NULL) {
*pk_parity = tmp;
}
secp256k1_xonly_pubkey_save(xonly_pubkey, &pk);
return 1;
}
int secp256k1_xonly_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *output_pubkey, const secp256k1_xonly_pubkey *internal_pubkey, const unsigned char *tweak32) {
secp256k1_ge pk;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output_pubkey != NULL);
memset(output_pubkey, 0, sizeof(*output_pubkey));
ARG_CHECK(internal_pubkey != NULL);
ARG_CHECK(tweak32 != NULL);
if (!secp256k1_xonly_pubkey_load(ctx, &pk, internal_pubkey)
|| !secp256k1_ec_pubkey_tweak_add_helper(&pk, tweak32)) {
return 0;
}
secp256k1_pubkey_save(output_pubkey, &pk);
return 1;
}
int secp256k1_xonly_pubkey_tweak_add_check(const secp256k1_context* ctx, const unsigned char *tweaked_pubkey32, int tweaked_pk_parity, const secp256k1_xonly_pubkey *internal_pubkey, const unsigned char *tweak32) {
secp256k1_ge pk;
unsigned char pk_expected32[32];
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(internal_pubkey != NULL);
ARG_CHECK(tweaked_pubkey32 != NULL);
ARG_CHECK(tweak32 != NULL);
if (!secp256k1_xonly_pubkey_load(ctx, &pk, internal_pubkey)
|| !secp256k1_ec_pubkey_tweak_add_helper(&pk, tweak32)) {
return 0;
}
secp256k1_fe_normalize_var(&pk.x);
secp256k1_fe_normalize_var(&pk.y);
secp256k1_fe_get_b32(pk_expected32, &pk.x);
return secp256k1_memcmp_var(&pk_expected32, tweaked_pubkey32, 32) == 0
&& secp256k1_fe_is_odd(&pk.y) == tweaked_pk_parity;
}
static void secp256k1_keypair_save(secp256k1_keypair *keypair, const secp256k1_scalar *sk, secp256k1_ge *pk) {
secp256k1_scalar_get_b32(&keypair->data[0], sk);
secp256k1_pubkey_save((secp256k1_pubkey *)&keypair->data[32], pk);
}
static int secp256k1_keypair_seckey_load(const secp256k1_context* ctx, secp256k1_scalar *sk, const secp256k1_keypair *keypair) {
int ret;
ret = secp256k1_scalar_set_b32_seckey(sk, &keypair->data[0]);
/* We can declassify ret here because sk is only zero if a keypair function
* failed (which zeroes the keypair) and its return value is ignored. */
secp256k1_declassify(ctx, &ret, sizeof(ret));
ARG_CHECK(ret);
return ret;
}
/* Load a keypair into pk and sk (if non-NULL). This function declassifies pk
* and ARG_CHECKs that the keypair is not invalid. It always initializes sk and
* pk with dummy values. */
static int secp256k1_keypair_load(const secp256k1_context* ctx, secp256k1_scalar *sk, secp256k1_ge *pk, const secp256k1_keypair *keypair) {
int ret;
const secp256k1_pubkey *pubkey = (const secp256k1_pubkey *)&keypair->data[32];
/* Need to declassify the pubkey because pubkey_load ARG_CHECKs if it's
* invalid. */
secp256k1_declassify(ctx, pubkey, sizeof(*pubkey));
ret = secp256k1_pubkey_load(ctx, pk, pubkey);
if (sk != NULL) {
ret = ret && secp256k1_keypair_seckey_load(ctx, sk, keypair);
}
if (!ret) {
*pk = secp256k1_ge_const_g;
if (sk != NULL) {
*sk = secp256k1_scalar_one;
}
}
return ret;
}
int secp256k1_keypair_create(const secp256k1_context* ctx, secp256k1_keypair *keypair, const unsigned char *seckey32) {
secp256k1_scalar sk;
secp256k1_ge pk;
int ret = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(keypair != NULL);
memset(keypair, 0, sizeof(*keypair));
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(seckey32 != NULL);
ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &sk, &pk, seckey32);
secp256k1_keypair_save(keypair, &sk, &pk);
secp256k1_memczero(keypair, sizeof(*keypair), !ret);
secp256k1_scalar_clear(&sk);
return ret;
}
int secp256k1_keypair_sec(const secp256k1_context* ctx, unsigned char *seckey, const secp256k1_keypair *keypair) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
memset(seckey, 0, 32);
ARG_CHECK(keypair != NULL);
memcpy(seckey, &keypair->data[0], 32);
return 1;
}
int secp256k1_keypair_pub(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_keypair *keypair) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
ARG_CHECK(keypair != NULL);
memcpy(pubkey->data, &keypair->data[32], sizeof(*pubkey));
return 1;
}
int secp256k1_keypair_xonly_pub(const secp256k1_context* ctx, secp256k1_xonly_pubkey *pubkey, int *pk_parity, const secp256k1_keypair *keypair) {
secp256k1_ge pk;
int tmp;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
ARG_CHECK(keypair != NULL);
if (!secp256k1_keypair_load(ctx, NULL, &pk, keypair)) {
return 0;
}
tmp = secp256k1_extrakeys_ge_even_y(&pk);
if (pk_parity != NULL) {
*pk_parity = tmp;
}
secp256k1_xonly_pubkey_save(pubkey, &pk);
return 1;
}
int secp256k1_keypair_xonly_tweak_add(const secp256k1_context* ctx, secp256k1_keypair *keypair, const unsigned char *tweak32) {
secp256k1_ge pk;
secp256k1_scalar sk;
int y_parity;
int ret;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(keypair != NULL);
ARG_CHECK(tweak32 != NULL);
ret = secp256k1_keypair_load(ctx, &sk, &pk, keypair);
memset(keypair, 0, sizeof(*keypair));
y_parity = secp256k1_extrakeys_ge_even_y(&pk);
if (y_parity == 1) {
secp256k1_scalar_negate(&sk, &sk);
}
ret &= secp256k1_ec_seckey_tweak_add_helper(&sk, tweak32);
ret &= secp256k1_ec_pubkey_tweak_add_helper(&pk, tweak32);
secp256k1_declassify(ctx, &ret, sizeof(ret));
if (ret) {
secp256k1_keypair_save(keypair, &sk, &pk);
}
secp256k1_scalar_clear(&sk);
return ret;
}
#endif

View File

@ -0,0 +1,68 @@
/***********************************************************************
* Copyright (c) 2020 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_H
#define SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_H
#include "../../../include/secp256k1_extrakeys.h"
#include "main_impl.h"
static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp256k1_ge* group) {
secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1];
secp256k1_pubkey pubkey[EXHAUSTIVE_TEST_ORDER - 1];
secp256k1_xonly_pubkey xonly_pubkey[EXHAUSTIVE_TEST_ORDER - 1];
int parities[EXHAUSTIVE_TEST_ORDER - 1];
unsigned char xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - 1][32];
int i;
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
secp256k1_fe fe;
secp256k1_scalar scalar_i;
unsigned char buf[33];
int parity;
secp256k1_scalar_set_int(&scalar_i, i);
secp256k1_scalar_get_b32(buf, &scalar_i);
/* Construct pubkey and keypair. */
CHECK(secp256k1_keypair_create(ctx, &keypair[i - 1], buf));
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey[i - 1], buf));
/* Construct serialized xonly_pubkey from keypair. */
CHECK(secp256k1_keypair_xonly_pub(ctx, &xonly_pubkey[i - 1], &parities[i - 1], &keypair[i - 1]));
CHECK(secp256k1_xonly_pubkey_serialize(ctx, xonly_pubkey_bytes[i - 1], &xonly_pubkey[i - 1]));
/* Parse the xonly_pubkey back and verify it matches the previously serialized value. */
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pubkey[i - 1], xonly_pubkey_bytes[i - 1]));
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf, &xonly_pubkey[i - 1]));
CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], buf, 32) == 0);
/* Construct the xonly_pubkey from the pubkey, and verify it matches the same. */
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pubkey[i - 1], &parity, &pubkey[i - 1]));
CHECK(parity == parities[i - 1]);
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf, &xonly_pubkey[i - 1]));
CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], buf, 32) == 0);
/* Compare the xonly_pubkey bytes against the precomputed group. */
secp256k1_fe_set_b32_mod(&fe, xonly_pubkey_bytes[i - 1]);
CHECK(secp256k1_fe_equal_var(&fe, &group[i].x));
/* Check the parity against the precomputed group. */
fe = group[i].y;
secp256k1_fe_normalize_var(&fe);
CHECK(secp256k1_fe_is_odd(&fe) == parities[i - 1]);
/* Verify that the higher half is identical to the lower half mirrored. */
if (i > EXHAUSTIVE_TEST_ORDER / 2) {
CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - i - 1], 32) == 0);
CHECK(parities[i - 1] == 1 - parities[EXHAUSTIVE_TEST_ORDER - i - 1]);
}
}
/* TODO: keypair/xonly_pubkey tweak tests */
}
#endif

Some files were not shown because too many files have changed in this diff Show More