/* MIT (BSD) license - see LICENSE file for details */ /* SHA256 core code translated from the Bitcoin project's C++: * * src/crypto/sha256.cpp commit 417532c8acb93c36c2b6fd052b7c11b6a2906aa2 * Copyright (c) 2014 The Bitcoin Core developers * Distributed under the MIT software license, see the accompanying * file COPYING or http://www.opensource.org/licenses/mit-license.php. */ #include "sha256.h" #include "endian.h" #include "compiler.h" #include #include #include static void invalidate_sha256(struct sha256_ctx *ctx) { #ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL ctx->c.md_len = 0; #else ctx->bytes = (size_t)-1; #endif } static void check_sha256(struct sha256_ctx *ctx) { #ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL assert(ctx->c.md_len != 0); #else assert(ctx->bytes != (size_t)-1); #endif } #ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL void sha256_init(struct sha256_ctx *ctx) { SHA256_Init(&ctx->c); } void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size) { check_sha256(ctx); SHA256_Update(&ctx->c, p, size); } void sha256_done(struct sha256_ctx *ctx, struct sha256 *res) { SHA256_Final(res->u.u8, &ctx->c); invalidate_sha256(ctx); } #else static uint32_t Ch(uint32_t x, uint32_t y, uint32_t z) { return z ^ (x & (y ^ z)); } static uint32_t Maj(uint32_t x, uint32_t y, uint32_t z) { return (x & y) | (z & (x | y)); } static uint32_t Sigma0(uint32_t x) { return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10); } static uint32_t Sigma1(uint32_t x) { return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7); } static uint32_t sigma0(uint32_t x) { return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3); } static uint32_t sigma1(uint32_t x) { return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10); } /** One round of SHA-256. */ static void Round(uint32_t a, uint32_t b, uint32_t c, uint32_t *d, uint32_t e, uint32_t f, uint32_t g, uint32_t *h, uint32_t k, uint32_t w) { uint32_t t1 = *h + Sigma1(e) + Ch(e, f, g) + k + w; uint32_t t2 = Sigma0(a) + Maj(a, b, c); *d += t1; *h = t1 + t2; } /** Perform one SHA-256 transformation, processing a 64-byte chunk. */ static void Transform(uint32_t *s, const uint32_t *chunk) { uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7]; uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15; Round(a, b, c, &d, e, f, g, &h, 0x428a2f98, w0 = be32_to_cpu(chunk[0])); Round(h, a, b, &c, d, e, f, &g, 0x71374491, w1 = be32_to_cpu(chunk[1])); Round(g, h, a, &b, c, d, e, &f, 0xb5c0fbcf, w2 = be32_to_cpu(chunk[2])); Round(f, g, h, &a, b, c, d, &e, 0xe9b5dba5, w3 = be32_to_cpu(chunk[3])); Round(e, f, g, &h, a, b, c, &d, 0x3956c25b, w4 = be32_to_cpu(chunk[4])); Round(d, e, f, &g, h, a, b, &c, 0x59f111f1, w5 = be32_to_cpu(chunk[5])); Round(c, d, e, &f, g, h, a, &b, 0x923f82a4, w6 = be32_to_cpu(chunk[6])); Round(b, c, d, &e, f, g, h, &a, 0xab1c5ed5, w7 = be32_to_cpu(chunk[7])); Round(a, b, c, &d, e, f, g, &h, 0xd807aa98, w8 = be32_to_cpu(chunk[8])); Round(h, a, b, &c, d, e, f, &g, 0x12835b01, w9 = be32_to_cpu(chunk[9])); Round(g, h, a, &b, c, d, e, &f, 0x243185be, w10 = be32_to_cpu(chunk[10])); Round(f, g, h, &a, b, c, d, &e, 0x550c7dc3, w11 = be32_to_cpu(chunk[11])); Round(e, f, g, &h, a, b, c, &d, 0x72be5d74, w12 = be32_to_cpu(chunk[12])); Round(d, e, f, &g, h, a, b, &c, 0x80deb1fe, w13 = be32_to_cpu(chunk[13])); Round(c, d, e, &f, g, h, a, &b, 0x9bdc06a7, w14 = be32_to_cpu(chunk[14])); Round(b, c, d, &e, f, g, h, &a, 0xc19bf174, w15 = be32_to_cpu(chunk[15])); Round(a, b, c, &d, e, f, g, &h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1)); Round(h, a, b, &c, d, e, f, &g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2)); Round(g, h, a, &b, c, d, e, &f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3)); Round(f, g, h, &a, b, c, d, &e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4)); Round(e, f, g, &h, a, b, c, &d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5)); Round(d, e, f, &g, h, a, b, &c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6)); Round(c, d, e, &f, g, h, a, &b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7)); Round(b, c, d, &e, f, g, h, &a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8)); Round(a, b, c, &d, e, f, g, &h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9)); Round(h, a, b, &c, d, e, f, &g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10)); Round(g, h, a, &b, c, d, e, &f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11)); Round(f, g, h, &a, b, c, d, &e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12)); Round(e, f, g, &h, a, b, c, &d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13)); Round(d, e, f, &g, h, a, b, &c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14)); Round(c, d, e, &f, g, h, a, &b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15)); Round(b, c, d, &e, f, g, h, &a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0)); Round(a, b, c, &d, e, f, g, &h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1)); Round(h, a, b, &c, d, e, f, &g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2)); Round(g, h, a, &b, c, d, e, &f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3)); Round(f, g, h, &a, b, c, d, &e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4)); Round(e, f, g, &h, a, b, c, &d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5)); Round(d, e, f, &g, h, a, b, &c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6)); Round(c, d, e, &f, g, h, a, &b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7)); Round(b, c, d, &e, f, g, h, &a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8)); Round(a, b, c, &d, e, f, g, &h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9)); Round(h, a, b, &c, d, e, f, &g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10)); Round(g, h, a, &b, c, d, e, &f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11)); Round(f, g, h, &a, b, c, d, &e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12)); Round(e, f, g, &h, a, b, c, &d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13)); Round(d, e, f, &g, h, a, b, &c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14)); Round(c, d, e, &f, g, h, a, &b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15)); Round(b, c, d, &e, f, g, h, &a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0)); Round(a, b, c, &d, e, f, g, &h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1)); Round(h, a, b, &c, d, e, f, &g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2)); Round(g, h, a, &b, c, d, e, &f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3)); Round(f, g, h, &a, b, c, d, &e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4)); Round(e, f, g, &h, a, b, c, &d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5)); Round(d, e, f, &g, h, a, b, &c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6)); Round(c, d, e, &f, g, h, a, &b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7)); Round(b, c, d, &e, f, g, h, &a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8)); Round(a, b, c, &d, e, f, g, &h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9)); Round(h, a, b, &c, d, e, f, &g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10)); Round(g, h, a, &b, c, d, e, &f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11)); Round(f, g, h, &a, b, c, d, &e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12)); Round(e, f, g, &h, a, b, c, &d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13)); Round(d, e, f, &g, h, a, b, &c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14)); Round(c, d, e, &f, g, h, a, &b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15)); Round(b, c, d, &e, f, g, h, &a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0)); s[0] += a; s[1] += b; s[2] += c; s[3] += d; s[4] += e; s[5] += f; s[6] += g; s[7] += h; } static void add(struct sha256_ctx *ctx, const void *p, size_t len) { const unsigned char *data = p; size_t bufsize = ctx->bytes % 64; if (bufsize + len >= 64) { /* Fill the buffer, and process it. */ memcpy(ctx->buf.u8 + bufsize, data, 64 - bufsize); ctx->bytes += 64 - bufsize; data += 64 - bufsize; len -= 64 - bufsize; Transform(ctx->s, ctx->buf.u32); bufsize = 0; } while (len >= 64) { /* Process full chunks directly from the source. */ if (alignment_ok(data, sizeof(uint32_t))) Transform(ctx->s, (const uint32_t *)data); else { memcpy(ctx->buf.u8, data, sizeof(ctx->buf)); Transform(ctx->s, ctx->buf.u32); } ctx->bytes += 64; data += 64; len -= 64; } if (len) { /* Fill the buffer with what remains. */ memcpy(ctx->buf.u8 + bufsize, data, len); ctx->bytes += len; } } void sha256_init(struct sha256_ctx *ctx) { struct sha256_ctx init = SHA256_INIT; *ctx = init; } void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size) { check_sha256(ctx); add(ctx, p, size); } void sha256_done(struct sha256_ctx *ctx, struct sha256 *res) { static const unsigned char pad[64] = {0x80}; uint64_t sizedesc; size_t i; sizedesc = cpu_to_be64((uint64_t)ctx->bytes << 3); /* Add '1' bit to terminate, then all 0 bits, up to next block - 8. */ add(ctx, pad, 1 + ((128 - 8 - (ctx->bytes % 64) - 1) % 64)); /* Add number of bits of data (big endian) */ add(ctx, &sizedesc, 8); for (i = 0; i < sizeof(ctx->s) / sizeof(ctx->s[0]); i++) res->u.u32[i] = cpu_to_be32(ctx->s[i]); invalidate_sha256(ctx); } #endif void sha256(struct sha256 *sha, const void *p, size_t size) { struct sha256_ctx ctx; sha256_init(&ctx); sha256_update(&ctx, p, size); sha256_done(&ctx, sha); } void sha256_u8(struct sha256_ctx *ctx, uint8_t v) { sha256_update(ctx, &v, sizeof(v)); } void sha256_u16(struct sha256_ctx *ctx, uint16_t v) { sha256_update(ctx, &v, sizeof(v)); } void sha256_u32(struct sha256_ctx *ctx, uint32_t v) { sha256_update(ctx, &v, sizeof(v)); } void sha256_u64(struct sha256_ctx *ctx, uint64_t v) { sha256_update(ctx, &v, sizeof(v)); } /* Add as little-endian */ void sha256_le16(struct sha256_ctx *ctx, uint16_t v) { leint16_t lev = cpu_to_le16(v); sha256_update(ctx, &lev, sizeof(lev)); } void sha256_le32(struct sha256_ctx *ctx, uint32_t v) { leint32_t lev = cpu_to_le32(v); sha256_update(ctx, &lev, sizeof(lev)); } void sha256_le64(struct sha256_ctx *ctx, uint64_t v) { leint64_t lev = cpu_to_le64(v); sha256_update(ctx, &lev, sizeof(lev)); } /* Add as big-endian */ void sha256_be16(struct sha256_ctx *ctx, uint16_t v) { beint16_t bev = cpu_to_be16(v); sha256_update(ctx, &bev, sizeof(bev)); } void sha256_be32(struct sha256_ctx *ctx, uint32_t v) { beint32_t bev = cpu_to_be32(v); sha256_update(ctx, &bev, sizeof(bev)); } void sha256_be64(struct sha256_ctx *ctx, uint64_t v) { beint64_t bev = cpu_to_be64(v); sha256_update(ctx, &bev, sizeof(bev)); }