#include #include #include #include #include #include #include #include #include "cursor.h" #include "hex.h" #include "sha256.h" #include "random.h" #define MAX_TAGS 32 #define MAX_TAG_ELEMS 16 #define HAS_CREATED_AT (1<<1) #define HAS_KIND (1<<2) #define HAS_ENVELOPE (1<<2) struct key { secp256k1_keypair pair; unsigned char pubkey[32]; }; struct args { unsigned int flags; int kind; const char *sec; const char *content; uint64_t created_at; }; struct nostr_tag { const char *strs[MAX_TAG_ELEMS]; int num_elems; }; struct nostr_event { unsigned char id[32]; unsigned char pubkey[32]; unsigned char sig[64]; const char *content; uint64_t created_at; int kind; struct nostr_tag tags[MAX_TAGS]; int num_tags; }; void usage() { printf("usage: nostril \n"); exit(1); } inline static int cursor_push_escaped_char(struct cursor *cur, char c) { switch (c) { case '"': return cursor_push_str(cur, "\\\""); case '\\': return cursor_push_str(cur, "\\\\"); case '\b': return cursor_push_str(cur, "\\b"); case '\f': return cursor_push_str(cur, "\\f"); case '\n': return cursor_push_str(cur, "\\n"); case '\r': return cursor_push_str(cur, "\\r"); case '\t': return cursor_push_str(cur, "\\t"); // TODO: \u hex hex hex hex } return cursor_push_byte(cur, c); } static int cursor_push_jsonstr(struct cursor *cur, const char *str) { int i; int len; len = strlen(str); if (!cursor_push_byte(cur, '"')) return 0; for (i = 0; i < len; i++) { if (!cursor_push_escaped_char(cur, str[i])) return 0; } if (!cursor_push_byte(cur, '"')) return 0; return 1; } static int cursor_push_tag(struct cursor *cur, struct nostr_tag *tag) { int i; if (!cursor_push_byte(cur, '[')) return 0; for (i = 0; i < tag->num_elems; i++) { if (!cursor_push_jsonstr(cur, tag->strs[i])) return 0; if (i != tag->num_elems-1) { if (!cursor_push_byte(cur, ',')) return 0; } } return cursor_push_byte(cur, ']'); } static int cursor_push_tags(struct cursor *cur, struct nostr_event *ev) { int i; if (!cursor_push_byte(cur, '[')) return 0; for (i = 0; i < ev->num_tags; i++) { if (!cursor_push_tag(cur, &ev->tags[i])) return 0; if (i != ev->num_tags-1) { if (!cursor_push_str(cur, ",")) return 0; } } return cursor_push_byte(cur, ']'); } int event_commitment(struct nostr_event *ev, unsigned char *buf, int buflen) { char timebuf[16] = {0}; char kindbuf[16] = {0}; char pubkey[65]; struct cursor cur; int ok; ok = hex_encode(ev->pubkey, sizeof(ev->pubkey), pubkey, sizeof(pubkey)); assert(ok); make_cursor(buf, buf + buflen, &cur); snprintf(timebuf, sizeof(timebuf), "%" PRIu64 "", ev->created_at); snprintf(kindbuf, sizeof(kindbuf), "%d", ev->kind); ok = cursor_push_str(&cur, "[0,\"") && cursor_push_str(&cur, pubkey) && cursor_push_str(&cur, "\",") && cursor_push_str(&cur, timebuf) && cursor_push_str(&cur, ",") && cursor_push_str(&cur, kindbuf) && cursor_push_str(&cur, ",") && cursor_push_tags(&cur, ev) && cursor_push_str(&cur, ",") && cursor_push_jsonstr(&cur, ev->content) && cursor_push_str(&cur, "]"); if (!ok) return 0; return cur.p - cur.start; } static int make_sig(secp256k1_context *ctx, struct key *key, unsigned char *id, unsigned char sig[64]) { unsigned char aux[32]; if (!fill_random(aux, sizeof(aux))) { return 0; } return secp256k1_schnorrsig_sign(ctx, sig, id, &key->pair, aux); } static int create_key(secp256k1_context *ctx, struct key *key, unsigned char seckey[32]) { secp256k1_xonly_pubkey pubkey; /* Try to create a keypair with a valid context, it should only * fail if the secret key is zero or out of range. */ if (!secp256k1_keypair_create(ctx, &key->pair, seckey)) return 0; if (!secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &key->pair)) return 0; /* Serialize the public key. Should always return 1 for a valid public key. */ return secp256k1_xonly_pubkey_serialize(ctx, key->pubkey, &pubkey); } static int decode_key(secp256k1_context *ctx, const char *secstr, struct key *key) { unsigned char seckey[32]; int ok; if (!hex_decode(secstr, strlen(secstr), seckey, 32)) { fprintf(stderr, "could not hex decode secret key\n"); return 0; } return create_key(ctx, key, seckey); } static int generate_key(secp256k1_context *ctx, struct key *key) { unsigned char seckey[32]; /* If the secret key is zero or out of range (bigger than secp256k1's * order), we try to sample a new key. Note that the probability of this * happening is negligible. */ if (!fill_random(seckey, sizeof(seckey))) { return 0; } return create_key(ctx, key, seckey); } static int init_secp_context(secp256k1_context **ctx) { unsigned char randomize[32]; *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); if (!fill_random(randomize, sizeof(randomize))) { return 0; } /* Randomizing the context is recommended to protect against side-channel * leakage See `secp256k1_context_randomize` in secp256k1.h for more * information about it. This should never fail. */ return secp256k1_context_randomize(*ctx, randomize); } static int generate_event_id(struct nostr_event *ev) { static unsigned char buf[32000]; int len; if (!(len = event_commitment(ev, buf, sizeof(buf)))) { fprintf(stderr, "event_commitment: buffer out of space\n"); return 0; } fprintf(stderr, "commitment: '%.*s'\n", len, buf); sha256((struct sha256*)ev->id, buf, len); return 1; } static int sign_event(secp256k1_context *ctx, struct key *key, struct nostr_event *ev) { if (!make_sig(ctx, key, ev->id, ev->sig)) { fprintf(stderr, "Signature generation failed\n"); return 0; } return 1; } static int print_event(struct nostr_event *ev, int envelope) { unsigned char buf[32000]; char pubkey[65]; char id[65]; char sig[129]; struct cursor cur; int ok; ok = hex_encode(ev->id, sizeof(ev->id), id, sizeof(id)) && hex_encode(ev->pubkey, sizeof(ev->pubkey), pubkey, sizeof(pubkey)) && hex_encode(ev->sig, sizeof(ev->sig), sig, sizeof(sig)); assert(ok); make_cursor(buf, buf+sizeof(buf), &cur); if (!cursor_push_tags(&cur, ev)) return 0; if (envelope) printf("[\"EVENT\","); printf("{\"id\": \"%s\",", id); printf("\"pubkey\": \"%s\",", pubkey); printf("\"created_at\": %" PRIu64 ",", ev->created_at); printf("\"kind\": %d,", ev->kind); printf("\"tags\": %.*s,", (int)cursor_len(&cur), cur.start); reset_cursor(&cur); if (!cursor_push_jsonstr(&cur, ev->content)) return 0; printf("\"content\": %.*s,", (int)cursor_len(&cur), cur.start); printf("\"sig\": \"%s\"}", sig); if (envelope) printf("]"); printf("\n"); return 1; } static void make_event_from_args(struct nostr_event *ev, struct args *args) { ev->tags[0].strs[0] = "tag"; ev->tags[0].strs[1] = "a"; ev->tags[0].num_elems = 2; ev->num_tags = 0; ev->created_at = args->flags & HAS_CREATED_AT? args->created_at : time(NULL); ev->content = args->content; ev->kind = 1; } static int parse_num(const char *arg, uint64_t *t) { *t = strtol(arg, NULL, 10); return errno != EINVAL; } static int parse_args(int argc, const char *argv[], struct args *args) { const char *arg; uint64_t n; argv++; argc--; for (; argc; ) { arg = *argv++; argc--; if (!argc) { args->content = arg; return 1; } if (!strcmp(arg, "--sec")) { args->sec = *argv++; argc--; } else if (!strcmp(arg, "--created-at")) { arg = *argv++; argc--; if (!parse_num(arg, &args->created_at)) { fprintf(stderr, "created-at must be a unix timestamp\n"); return 0; } else { args->flags |= HAS_CREATED_AT; } } else if (!strcmp(arg, "--kind")) { if (!parse_num(arg, &n)) { fprintf(stderr, "kind should be a number, got '%s'\n", arg); return 0; } args->kind = (int)n; args->flags |= HAS_KIND; } else if (!strcmp(arg, "--envelope")) { args->flags |= HAS_ENVELOPE; } else if (!strncmp(arg, "--", 2)) { fprintf(stderr, "unknown argument: %s\n", arg); return 0; } } return 1; } int main(int argc, const char *argv[]) { struct args args = {0}; struct nostr_event ev = {0}; struct key key; secp256k1_context *ctx; int ok; if (argc < 2) usage(); if (!init_secp_context(&ctx)) return 2; if (!parse_args(argc, argv, &args)) return 10; make_event_from_args(&ev, &args); if (args.sec) { if (!decode_key(ctx, args.sec, &key)) { return 8; } } else { if (!generate_key(ctx, &key)) { fprintf(stderr, "could not generate key"); return 4; } } // set the event's pubkey memcpy(ev.pubkey, key.pubkey, 32); if (!generate_event_id(&ev)) { fprintf(stderr, "could not generate event id\n"); return 5; } if (!sign_event(ctx, &key, &ev)) { fprintf(stderr, "could not sign event\n"); return 6; } if (!print_event(&ev, args.flags & HAS_ENVELOPE)) { fprintf(stderr, "buffer too small\n"); return 88; } return 0; }