""" Generates the constants used in secp256k1_scalar_split_lambda. See the comments for secp256k1_scalar_split_lambda in src/scalar_impl.h for detailed explanations. """ load("secp256k1_params.sage") def inf_norm(v): """Returns the infinity norm of a vector.""" return max(map(abs, v)) def gauss_reduction(i1, i2): v1, v2 = i1.copy(), i2.copy() while True: if inf_norm(v2) < inf_norm(v1): v1, v2 = v2, v1 # This is essentially # m = round((v1[0]*v2[0] + v1[1]*v2[1]) / (inf_norm(v1)**2)) # (rounding to the nearest integer) without relying on floating point arithmetic. m = ((v1[0]*v2[0] + v1[1]*v2[1]) + (inf_norm(v1)**2) // 2) // (inf_norm(v1)**2) if m == 0: return v1, v2 v2[0] -= m*v1[0] v2[1] -= m*v1[1] def find_split_constants_gauss(): """Find constants for secp256k1_scalar_split_lamdba using gauss reduction.""" (v11, v12), (v21, v22) = gauss_reduction([0, N], [1, int(LAMBDA)]) # We use related vectors in secp256k1_scalar_split_lambda. A1, B1 = -v21, -v11 A2, B2 = v22, -v21 return A1, B1, A2, B2 def find_split_constants_explicit_tof(): """Find constants for secp256k1_scalar_split_lamdba using the trace of Frobenius. See Benjamin Smith: "Easy scalar decompositions for efficient scalar multiplication on elliptic curves and genus 2 Jacobians" (https://eprint.iacr.org/2013/672), Example 2 """ assert P % 3 == 1 # The paper says P % 3 == 2 but that appears to be a mistake, see [10]. assert C.j_invariant() == 0 t = C.trace_of_frobenius() c = Integer(sqrt((4*P - t**2)/3)) A1 = Integer((t - c)/2 - 1) B1 = c A2 = Integer((t + c)/2 - 1) B2 = Integer(1 - (t - c)/2) # We use a negated b values in secp256k1_scalar_split_lambda. B1, B2 = -B1, -B2 return A1, B1, A2, B2 A1, B1, A2, B2 = find_split_constants_explicit_tof() # For extra fun, use an independent method to recompute the constants. assert (A1, B1, A2, B2) == find_split_constants_gauss() # PHI : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n. def PHI(a,b): return Z(a + LAMBDA*b) # Check that (A1, B1) and (A2, B2) are in the kernel of PHI. assert PHI(A1, B1) == Z(0) assert PHI(A2, B2) == Z(0) # Check that the parallelogram generated by (A1, A2) and (B1, B2) # is a fundamental domain by containing exactly N points. # Since the LHS is the determinant and N != 0, this also checks that # (A1, A2) and (B1, B2) are linearly independent. By the previous # assertions, (A1, A2) and (B1, B2) are a basis of the kernel. assert A1*B2 - B1*A2 == N # Check that their components are short enough. assert (A1 + A2)/2 < sqrt(N) assert B1 < sqrt(N) assert B2 < sqrt(N) G1 = round((2**384)*B2/N) G2 = round((2**384)*(-B1)/N) def rnddiv2(v): if v & 1: v += 1 return v >> 1 def scalar_lambda_split(k): """Equivalent to secp256k1_scalar_lambda_split().""" c1 = rnddiv2((k * G1) >> 383) c2 = rnddiv2((k * G2) >> 383) c1 = (c1 * -B1) % N c2 = (c2 * -B2) % N r2 = (c1 + c2) % N r1 = (k + r2 * -LAMBDA) % N return (r1, r2) # The result of scalar_lambda_split can depend on the representation of k (mod n). SPECIAL = (2**383) // G2 + 1 assert scalar_lambda_split(SPECIAL) != scalar_lambda_split(SPECIAL + N) print(' A1 =', hex(A1)) print(' -B1 =', hex(-B1)) print(' A2 =', hex(A2)) print(' -B2 =', hex(-B2)) print(' =', hex(Z(-B2))) print(' -LAMBDA =', hex(-LAMBDA)) print(' G1 =', hex(G1)) print(' G2 =', hex(G2))