nostril/nostril.c

827 lines
20 KiB
C

#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#ifdef _MSC_VER
#else
#include <unistd.h>
#endif
#ifdef _MSC_VER
#include "clock_gettime.h"
#define CLOCK_MONOTONIC 0
#endif
#include "secp256k1.h"
#include "secp256k1_ecdh.h"
#include "secp256k1_schnorrsig.h"
#include "cursor.h"
#include "hex.h"
#include "base64.h"
#include "aes.h"
#include "sha256.h"
#include "random.h"
#include "proof.h"
#define VERSION "0.1.3"
#define MAX_TAGS 32
#define MAX_TAG_ELEMS 16
#define HAS_CREATED_AT (1<<1)
#define HAS_KIND (1<<2)
#define HAS_ENVELOPE (1<<3)
#define HAS_ENCRYPT (1<<4)
#define HAS_DIFFICULTY (1<<5)
#define HAS_MINE_PUBKEY (1<<6)
struct key {
secp256k1_keypair pair;
unsigned char secret[32];
unsigned char pubkey[32];
};
struct args {
unsigned int flags;
int kind;
int difficulty;
unsigned char encrypt_to[32];
const char *sec;
const char *tags;
const char *content;
uint64_t created_at;
};
struct nostr_tag {
const char *strs[MAX_TAG_ELEMS];
int num_elems;
};
struct nostr_event {
unsigned char id[32];
unsigned char pubkey[32];
unsigned char sig[64];
const char *content;
uint64_t created_at;
int kind;
const char *explicit_tags;
struct nostr_tag tags[MAX_TAGS];
int num_tags;
};
void usage()
{
printf("usage: nostril [OPTIONS]\n");
printf("\n");
printf(" OPTIONS\n");
printf("\n");
printf(" --content <string> the content of the note\n");
printf(" --dm <hex pubkey> make an encrypted dm to said pubkey. sets kind and tags.\n");
printf(" --envelope wrap in [\"EVENT\",...] for easy relaying\n");
printf(" --kind <number> set kind\n");
printf(" --created-at <unix timestamp> set a specific created-at time\n");
printf(" --sec <hex seckey> set the secret key for signing, otherwise one will be randomly generated\n");
printf(" --pow <difficulty> number of leading 0 bits of the id to mine\n");
printf(" --mine-pubkey mine a pubkey instead of id\n");
printf(" --tag <key> <value> add a tag\n");
printf(" -e <event_id> shorthand for --tag e <event_id>\n");
printf(" -p <pubkey> shorthand for --tag p <pubkey>\n");
printf(" -t <hashtag> shorthand for --tag t <hashtag>\n");
exit(1);
}
inline static int cursor_push_escaped_char(struct cursor *cur, char c)
{
switch (c) {
case '"': return cursor_push_str(cur, "\\\"");
case '\\': return cursor_push_str(cur, "\\\\");
case '\b': return cursor_push_str(cur, "\\b");
case '\f': return cursor_push_str(cur, "\\f");
case '\n': return cursor_push_str(cur, "\\n");
case '\r': return cursor_push_str(cur, "\\r");
case '\t': return cursor_push_str(cur, "\\t");
// TODO: \u hex hex hex hex
}
return cursor_push_byte(cur, c);
}
static int cursor_push_jsonstr(struct cursor *cur, const char *str)
{
int i;
int len;
len = strlen(str);
if (!cursor_push_byte(cur, '"'))
return 0;
for (i = 0; i < len; i++) {
if (!cursor_push_escaped_char(cur, str[i]))
return 0;
}
if (!cursor_push_byte(cur, '"'))
return 0;
return 1;
}
static int cursor_push_tag(struct cursor *cur, struct nostr_tag *tag)
{
int i;
if (!cursor_push_byte(cur, '['))
return 0;
for (i = 0; i < tag->num_elems; i++) {
if (!cursor_push_jsonstr(cur, tag->strs[i]))
return 0;
if (i != tag->num_elems-1) {
if (!cursor_push_byte(cur, ','))
return 0;
}
}
return cursor_push_byte(cur, ']');
}
static int cursor_push_tags(struct cursor *cur, struct nostr_event *ev)
{
int i;
if (ev->explicit_tags) {
return cursor_push_str(cur, ev->explicit_tags);
}
if (!cursor_push_byte(cur, '['))
return 0;
for (i = 0; i < ev->num_tags; i++) {
if (!cursor_push_tag(cur, &ev->tags[i]))
return 0;
if (i != ev->num_tags-1) {
if (!cursor_push_str(cur, ","))
return 0;
}
}
return cursor_push_byte(cur, ']');
}
int event_commitment(struct nostr_event *ev, unsigned char *buf, int buflen)
{
char timebuf[16] = {0};
char kindbuf[16] = {0};
char pubkey[65];
struct cursor cur;
int ok;
ok = hex_encode(ev->pubkey, sizeof(ev->pubkey), pubkey, sizeof(pubkey));
assert(ok);
make_cursor(buf, buf + buflen, &cur);
snprintf(timebuf, sizeof(timebuf), "%" PRIu64 "", ev->created_at);
snprintf(kindbuf, sizeof(kindbuf), "%d", ev->kind);
ok =
cursor_push_str(&cur, "[0,\"") &&
cursor_push_str(&cur, pubkey) &&
cursor_push_str(&cur, "\",") &&
cursor_push_str(&cur, timebuf) &&
cursor_push_str(&cur, ",") &&
cursor_push_str(&cur, kindbuf) &&
cursor_push_str(&cur, ",") &&
cursor_push_tags(&cur, ev) &&
cursor_push_str(&cur, ",") &&
cursor_push_jsonstr(&cur, ev->content) &&
cursor_push_str(&cur, "]");
if (!ok)
return 0;
return cur.p - cur.start;
}
static int make_sig(secp256k1_context *ctx, struct key *key,
unsigned char *id, unsigned char sig[64])
{
unsigned char aux[32];
if (!fill_random(aux, sizeof(aux))) {
return 0;
}
return secp256k1_schnorrsig_sign32(ctx, sig, id, &key->pair, aux);
}
static int create_key(secp256k1_context *ctx, struct key *key)
{
secp256k1_xonly_pubkey pubkey;
/* Try to create a keypair with a valid context, it should only
* fail if the secret key is zero or out of range. */
if (!secp256k1_keypair_create(ctx, &key->pair, key->secret))
return 0;
if (!secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &key->pair))
return 0;
/* Serialize the public key. Should always return 1 for a valid public key. */
return secp256k1_xonly_pubkey_serialize(ctx, key->pubkey, &pubkey);
}
static int decode_key(secp256k1_context *ctx, const char *secstr, struct key *key)
{
if (!hex_decode(secstr, strlen(secstr), key->secret, 32)) {
fprintf(stderr, "could not hex decode secret key\n");
return 0;
}
return create_key(ctx, key);
}
static inline void xor_mix(unsigned char *dest, const unsigned char *a, const unsigned char *b, int size)
{
int i;
for (i = 0; i < size; i++)
dest[i] = a[i] ^ b[i];
}
static int generate_key(secp256k1_context *ctx, struct key *key, int *difficulty)
{
uint64_t attempts = 0;
uint64_t duration;
int bits;
double pers;
struct timespec t1, t2;
/* If the secret key is zero or out of range (bigger than secp256k1's
* order), we try to sample a new key. Note that the probability of this
* happening is negligible. */
if (!fill_random(key->secret, sizeof(key->secret))) {
return 0;
}
if (difficulty == NULL) {
return create_key(ctx, key);
}
clock_gettime(CLOCK_MONOTONIC, &t1);
while (1) {
if (!create_key(ctx, key))
return 0;
attempts++;
if ((bits = count_leading_zero_bits(key->pubkey)) >= *difficulty) {
clock_gettime(CLOCK_MONOTONIC, &t2);
duration = ((t2.tv_sec - t1.tv_sec) * 1e9L + (t2.tv_nsec - t1.tv_nsec)) / 1e6L;
pers = (double)attempts / (double)duration;
fprintf(stderr, "mined pubkey with %d bits after %" PRIu64 " attempts, %" PRId64 " ms, %f attempts per ms\n", bits, attempts, duration, pers);
return 1;
}
// NOTE: Get a new secret key by xor mixing the current secret
// key with the current public key. This doesn't rely on the
// system's crypto number generator so it should be fast. There
// shouldn't be any secret key entropy issues since we got a
// good source of entropy from the first fill_random call at
// the start of the function.
xor_mix(key->secret, key->secret, key->pubkey, 32);
}
}
static int init_secp_context(secp256k1_context **ctx)
{
unsigned char randomize[32];
*ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
if (!fill_random(randomize, sizeof(randomize))) {
return 0;
}
/* Randomizing the context is recommended to protect against side-channel
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
* information about it. This should never fail. */
return secp256k1_context_randomize(*ctx, randomize);
}
static int generate_event_id(struct nostr_event *ev)
{
static unsigned char buf[102400];
int len;
if (!(len = event_commitment(ev, buf, sizeof(buf)))) {
fprintf(stderr, "event_commitment: buffer out of space\n");
return 0;
}
//fprintf(stderr, "commitment: '%.*s'\n", len, buf);
sha256((struct sha256*)ev->id, buf, len);
return 1;
}
static int sign_event(secp256k1_context *ctx, struct key *key, struct nostr_event *ev)
{
if (!make_sig(ctx, key, ev->id, ev->sig))
return 0;
return 1;
}
static int print_event(struct nostr_event *ev, int envelope)
{
unsigned char buf[102400];
char pubkey[65];
char id[65];
char sig[129];
struct cursor cur;
int ok;
ok = hex_encode(ev->id, sizeof(ev->id), id, sizeof(id)) &&
hex_encode(ev->pubkey, sizeof(ev->pubkey), pubkey, sizeof(pubkey)) &&
hex_encode(ev->sig, sizeof(ev->sig), sig, sizeof(sig));
assert(ok);
make_cursor(buf, buf+sizeof(buf), &cur);
if (!cursor_push_tags(&cur, ev))
return 0;
if (envelope)
printf("[\"EVENT\",");
printf("{\"id\": \"%s\",", id);
printf("\"pubkey\": \"%s\",", pubkey);
printf("\"created_at\": %" PRIu64 ",", ev->created_at);
printf("\"kind\": %d,", ev->kind);
printf("\"tags\": %.*s,", (int)cursor_len(&cur), cur.start);
reset_cursor(&cur);
if (!cursor_push_jsonstr(&cur, ev->content))
return 0;
printf("\"content\": %.*s,", (int)cursor_len(&cur), cur.start);
printf("\"sig\": \"%s\"}", sig);
if (envelope)
printf("]");
printf("\n");
return 1;
}
static void make_event_from_args(struct nostr_event *ev, struct args *args)
{
ev->created_at = args->flags & HAS_CREATED_AT? args->created_at : time(NULL);
ev->content = args->content;
ev->kind = args->flags & HAS_KIND ? args->kind : 1;
}
static int parse_num(const char *arg, uint64_t *t)
{
*t = strtol(arg, NULL, 10);
return errno != EINVAL;
}
static int nostr_add_tag_n(struct nostr_event *ev, const char **ts, int n_ts)
{
int i;
struct nostr_tag *tag;
if (ev->num_tags + 1 > MAX_TAGS)
return 0;
tag = &ev->tags[ev->num_tags++];
tag->num_elems = n_ts;
for (i = 0; i < n_ts; i++) {
tag->strs[i] = ts[i];
}
return 1;
}
static int nostr_add_tag(struct nostr_event *ev, const char *t1, const char *t2)
{
const char *ts[] = {t1, t2};
return nostr_add_tag_n(ev, ts, 2);
}
static int parse_args(int argc, const char *argv[], struct args *args, struct nostr_event *ev)
{
const char *arg, *arg2;
uint64_t n;
int has_added_tags = 0;
argv++; argc--;
for (; argc; ) {
arg = *argv++; argc--;
if (!strcmp(arg, "--help")) {
usage();
}
if (!argc) {
fprintf(stderr, "expected argument: '%s'\n", arg);
return 0;
}
if (!strcmp(arg, "--sec")) {
args->sec = *argv++; argc--;
} else if (!strcmp(arg, "--created-at")) {
arg = *argv++; argc--;
if (!parse_num(arg, &args->created_at)) {
fprintf(stderr, "created-at must be a unix timestamp\n");
return 0;
} else {
args->flags |= HAS_CREATED_AT;
}
} else if (!strcmp(arg, "--kind")) {
arg = *argv++; argc--;
if (!parse_num(arg, &n)) {
fprintf(stderr, "kind should be a number, got '%s'\n", arg);
return 0;
}
args->kind = (int)n;
args->flags |= HAS_KIND;
} else if (!strcmp(arg, "--envelope")) {
args->flags |= HAS_ENVELOPE;
} else if (!strcmp(arg, "--tags")) {
if (args->flags & HAS_DIFFICULTY) {
fprintf(stderr, "can't combine --tags and --pow (yet)\n");
return 0;
}
if (has_added_tags) {
fprintf(stderr, "can't combine --tags and --tag (yet)");
return 0;
}
arg = *argv++; argc--;
args->tags = arg;
} else if (!strcmp(arg, "-e")) {
has_added_tags = 1;
arg = *argv++; argc--;
if (!nostr_add_tag(ev, "e", arg)) {
fprintf(stderr, "couldn't add e tag");
return 0;
}
} else if (!strcmp(arg, "-p")) {
has_added_tags = 1;
arg = *argv++; argc--;
if (!nostr_add_tag(ev, "p", arg)) {
fprintf(stderr, "couldn't add p tag");
return 0;
}
} else if (!strcmp(arg, "-t")) {
has_added_tags = 1;
arg = *argv++; argc--;
if (!nostr_add_tag(ev, "t", arg)) {
fprintf(stderr, "couldn't add t tag");
return 0;
}
} else if (!strcmp(arg, "--tag")) {
has_added_tags = 1;
if (args->tags) {
fprintf(stderr, "can't combine --tag and --tags (yet)");
return 0;
}
arg = *argv++; argc--;
if (argc == 0) {
fprintf(stderr, "expected two arguments to --tag\n");
return 0;
}
arg2 = *argv++; argc--;
if (!nostr_add_tag(ev, arg, arg2)) {
fprintf(stderr, "couldn't add tag '%s' '%s'\n", arg, arg2);
return 0;
}
} else if (!strcmp(arg, "--mine-pubkey")) {
args->flags |= HAS_MINE_PUBKEY;
} else if (!strcmp(arg, "--pow")) {
if (args->tags) {
fprintf(stderr, "can't combine --tags and --pow (yet)\n");
return 0;
}
arg = *argv++; argc--;
if (!parse_num(arg, &n)) {
fprintf(stderr, "could not parse difficulty as number: '%s'\n", arg);
return 0;
}
args->difficulty = n;
args->flags |= HAS_DIFFICULTY;
} else if (!strcmp(arg, "--dm")) {
arg = *argv++; argc--;
if (!hex_decode(arg, strlen(arg), args->encrypt_to, 32)) {
fprintf(stderr, "could not decode encrypt-to pubkey");
return 0;
}
args->flags |= HAS_ENCRYPT;
} else if (!strcmp(arg, "--content")) {
arg = *argv++; argc--;
args->content = arg;
} else {
fprintf(stderr, "unexpected argument '%s'\n", arg);
return 0;
}
}
if (!args->content)
args->content = "";
return 1;
}
static int aes_encrypt(unsigned char *key, unsigned char *iv,
unsigned char *buf, size_t buflen)
{
struct AES_ctx ctx;
unsigned char padding;
int i;
struct cursor cur;
padding = 16 - (buflen % 16);
make_cursor(buf, buf + buflen + padding, &cur);
cur.p += buflen;
//fprintf(stderr, "aes_encrypt: len %ld, padding %d\n", buflen, padding);
for (i = 0; i < padding; i++) {
if (!cursor_push_byte(&cur, padding)) {
return 0;
}
}
assert(cur.p == cur.end);
assert((cur.p - cur.start) % 16 == 0);
AES_init_ctx_iv(&ctx, key, iv);
//fprintf(stderr, "encrypting %ld bytes: ", cur.p - cur.start);
//print_hex(cur.start, cur.p - cur.start);
AES_CBC_encrypt_buffer(&ctx, cur.start, cur.p - cur.start);
return cur.p - cur.start;
}
static int copyx(unsigned char *output, const unsigned char *x32, const unsigned char *y32, void *data) {
memcpy(output, x32, 32);
return 1;
}
static int ensure_nonce_tag(struct nostr_event *ev, int target, int *index)
{
char *str_target = malloc(8);
struct nostr_tag *tag;
int i;
for (i = 0; i < ev->num_tags; i++) {
tag = &ev->tags[i];
if (tag->num_elems == 2 && !strcmp(tag->strs[0], "nonce")) {
*index = i;
return 1;
}
}
*index = ev->num_tags;
snprintf(str_target, 7, "%d", target);
const char *ts[] = { "nonce", "0", str_target };
return nostr_add_tag_n(ev, ts, 3);
}
static int mine_event(struct nostr_event *ev, int difficulty)
{
char *strnonce = malloc(33);
struct nostr_tag *tag;
uint64_t nonce;
int index, res;
if (!ensure_nonce_tag(ev, difficulty, &index))
return 0;
tag = &ev->tags[index];
assert(tag->num_elems == 3);
assert(!strcmp(tag->strs[0], "nonce"));
tag->strs[1] = strnonce;
for (nonce = 0;; nonce++) {
snprintf(strnonce, 32, "%" PRIu64, nonce);
if (!generate_event_id(ev))
return 0;
if ((res = count_leading_zero_bits(ev->id)) >= difficulty) {
fprintf(stderr, "mined %d bits\n", res);
return 1;
}
}
return 0;
}
static int make_encrypted_dm(secp256k1_context *ctx, struct key *key,
struct nostr_event *ev, unsigned char nostr_pubkey[32], int kind)
{
size_t inl = strlen(ev->content);
int enclen = inl + 16;
size_t buflen = enclen * 3 + 65 * 10;
unsigned char *buf = malloc(buflen);
unsigned char shared_secret[32];
unsigned char iv[16];
unsigned char compressed_pubkey[33];
int content_len = strlen(ev->content);
#ifdef _MSC_VER
unsigned char* encbuf = malloc(content_len + (content_len % 16) + 1);
#else
unsigned char encbuf[content_len + (content_len % 16) + 1];
#endif
struct cursor cur;
secp256k1_pubkey pubkey;
compressed_pubkey[0] = 2;
memcpy(&compressed_pubkey[1], nostr_pubkey, 32);
make_cursor(buf, buf + buflen, &cur);
if (!secp256k1_ec_seckey_verify(ctx, key->secret)) {
fprintf(stderr, "make_encrypted_dm: ec_seckey_verify failed\n");
return 0;
}
if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, compressed_pubkey, sizeof(compressed_pubkey))) {
fprintf(stderr, "make_encrypted_dm: ec_pubkey_parse failed\n");
return 0;
}
if (!secp256k1_ecdh(ctx, shared_secret, &pubkey, key->secret, copyx, NULL)) {
fprintf(stderr, "make_encrypted_dm: secp256k1_ecdh failed\n");
return 0;
}
if (!fill_random(iv, sizeof(iv))) {
fprintf(stderr, "make_encrypted_dm: fill_random failed\n");
return 0;
}
fprintf(stderr, "shared_secret ");
print_hex(shared_secret, 32);
memcpy(encbuf, ev->content, strlen(ev->content));
enclen = aes_encrypt(shared_secret, iv, encbuf, strlen(ev->content));
if (enclen == 0) {
fprintf(stderr, "make_encrypted_dm: aes_encrypt failed\n");
free(buf);
return 0;
}
if ((enclen = base64_encode((char *)buf, buflen, (const char*)encbuf, enclen)) == -1) {
fprintf(stderr, "make_encrypted_dm: base64 encode of encrypted fata failed\n");
return 0;
}
cur.p += enclen;
if (!cursor_push_str(&cur, "?iv=")) {
fprintf(stderr, "make_encrypted_dm: buffer too small\n");
return 0;
}
if ((enclen = base64_encode((char *)cur.p, cur.end - cur.p, (const char*)iv, 16)) == -1) {
fprintf(stderr, "make_encrypted_dm: base64 encode of iv failed\n");
return 0;
}
cur.p += enclen;
if (!cursor_push_byte(&cur, 0)) {
fprintf(stderr, "make_encrypted_dm: out of memory by 1 byte!\n");
return 0;
}
ev->content = (const char*)cur.start;
ev->kind = kind;
if (!hex_encode(nostr_pubkey, 32, (char*)cur.p, cur.end - cur.p))
return 0;
if (!nostr_add_tag(ev, "p", (const char*)cur.p)) {
fprintf(stderr, "too many tags\n");
return 0;
}
cur.p += 65;
#ifdef _MSC_VER
free(encbuf);
#endif
return 1;
}
static void try_subcommand(int argc, const char *argv[])
{
static char buf[128] = {0};
const char *sub = argv[1];
if (strlen(sub) >= 1 && sub[0] != '-') {
snprintf(buf, sizeof(buf)-1, "nostril-%s", sub);
execvp(buf, (char * const *)argv+1);
}
}
int main(int argc, const char *argv[])
{
struct args args = {0};
struct nostr_event ev = {0};
struct key key;
secp256k1_context *ctx;
if (argc < 2)
usage();
if (!init_secp_context(&ctx))
return 2;
try_subcommand(argc, argv);
if (!parse_args(argc, argv, &args, &ev)) {
usage();
return 10;
}
if (args.tags) {
ev.explicit_tags = args.tags;
}
make_event_from_args(&ev, &args);
if (args.sec) {
if (!decode_key(ctx, args.sec, &key)) {
return 8;
}
} else {
int *difficulty = NULL;
if ((args.flags & HAS_DIFFICULTY) && (args.flags & HAS_MINE_PUBKEY)) {
difficulty = &args.difficulty;
}
if (!generate_key(ctx, &key, difficulty)) {
fprintf(stderr, "could not generate key\n");
return 4;
}
fprintf(stderr, "secret_key ");
print_hex(key.secret, sizeof(key.secret));
fprintf(stderr, "\n");
}
if (args.flags & HAS_ENCRYPT) {
int kind = args.flags & HAS_KIND? args.kind : 4;
if (!make_encrypted_dm(ctx, &key, &ev, args.encrypt_to, kind)) {
fprintf(stderr, "error making encrypted dm\n");
return 0;
}
}
// set the event's pubkey
memcpy(ev.pubkey, key.pubkey, 32);
if (args.flags & HAS_DIFFICULTY && !(args.flags & HAS_MINE_PUBKEY)) {
if (!mine_event(&ev, args.difficulty)) {
fprintf(stderr, "error when mining id\n");
return 22;
}
} else {
if (!generate_event_id(&ev)) {
fprintf(stderr, "could not generate event id\n");
return 5;
}
}
if (!sign_event(ctx, &key, &ev)) {
fprintf(stderr, "could not sign event\n");
return 6;
}
if (!print_event(&ev, args.flags & HAS_ENVELOPE)) {
fprintf(stderr, "buffer too small\n");
return 88;
}
return 0;
}