mirror of
https://github.com/jb55/nostril.git
synced 2024-11-24 17:09:07 -05:00
123 lines
5.1 KiB
C
123 lines
5.1 KiB
C
|
/*************************************************************************
|
||
|
* Written in 2020-2022 by Elichai Turkel *
|
||
|
* To the extent possible under law, the author(s) have dedicated all *
|
||
|
* copyright and related and neighboring rights to the software in this *
|
||
|
* file to the public domain worldwide. This software is distributed *
|
||
|
* without any warranty. For the CC0 Public Domain Dedication, see *
|
||
|
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
|
||
|
*************************************************************************/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <assert.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <secp256k1.h>
|
||
|
#include <secp256k1_ecdh.h>
|
||
|
|
||
|
#include "examples_util.h"
|
||
|
|
||
|
int main(void) {
|
||
|
unsigned char seckey1[32];
|
||
|
unsigned char seckey2[32];
|
||
|
unsigned char compressed_pubkey1[33];
|
||
|
unsigned char compressed_pubkey2[33];
|
||
|
unsigned char shared_secret1[32];
|
||
|
unsigned char shared_secret2[32];
|
||
|
unsigned char randomize[32];
|
||
|
int return_val;
|
||
|
size_t len;
|
||
|
secp256k1_pubkey pubkey1;
|
||
|
secp256k1_pubkey pubkey2;
|
||
|
|
||
|
/* Before we can call actual API functions, we need to create a "context". */
|
||
|
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
|
||
|
if (!fill_random(randomize, sizeof(randomize))) {
|
||
|
printf("Failed to generate randomness\n");
|
||
|
return 1;
|
||
|
}
|
||
|
/* Randomizing the context is recommended to protect against side-channel
|
||
|
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
|
||
|
* information about it. This should never fail. */
|
||
|
return_val = secp256k1_context_randomize(ctx, randomize);
|
||
|
assert(return_val);
|
||
|
|
||
|
/*** Key Generation ***/
|
||
|
|
||
|
/* If the secret key is zero or out of range (bigger than secp256k1's
|
||
|
* order), we try to sample a new key. Note that the probability of this
|
||
|
* happening is negligible. */
|
||
|
while (1) {
|
||
|
if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) {
|
||
|
printf("Failed to generate randomness\n");
|
||
|
return 1;
|
||
|
}
|
||
|
if (secp256k1_ec_seckey_verify(ctx, seckey1) && secp256k1_ec_seckey_verify(ctx, seckey2)) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Public key creation using a valid context with a verified secret key should never fail */
|
||
|
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey1, seckey1);
|
||
|
assert(return_val);
|
||
|
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey2, seckey2);
|
||
|
assert(return_val);
|
||
|
|
||
|
/* Serialize pubkey1 in a compressed form (33 bytes), should always return 1 */
|
||
|
len = sizeof(compressed_pubkey1);
|
||
|
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey1, &len, &pubkey1, SECP256K1_EC_COMPRESSED);
|
||
|
assert(return_val);
|
||
|
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
|
||
|
assert(len == sizeof(compressed_pubkey1));
|
||
|
|
||
|
/* Serialize pubkey2 in a compressed form (33 bytes) */
|
||
|
len = sizeof(compressed_pubkey2);
|
||
|
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey2, &len, &pubkey2, SECP256K1_EC_COMPRESSED);
|
||
|
assert(return_val);
|
||
|
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
|
||
|
assert(len == sizeof(compressed_pubkey2));
|
||
|
|
||
|
/*** Creating the shared secret ***/
|
||
|
|
||
|
/* Perform ECDH with seckey1 and pubkey2. Should never fail with a verified
|
||
|
* seckey and valid pubkey */
|
||
|
return_val = secp256k1_ecdh(ctx, shared_secret1, &pubkey2, seckey1, NULL, NULL);
|
||
|
assert(return_val);
|
||
|
|
||
|
/* Perform ECDH with seckey2 and pubkey1. Should never fail with a verified
|
||
|
* seckey and valid pubkey */
|
||
|
return_val = secp256k1_ecdh(ctx, shared_secret2, &pubkey1, seckey2, NULL, NULL);
|
||
|
assert(return_val);
|
||
|
|
||
|
/* Both parties should end up with the same shared secret */
|
||
|
return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1));
|
||
|
assert(return_val == 0);
|
||
|
|
||
|
printf("Secret Key1: ");
|
||
|
print_hex(seckey1, sizeof(seckey1));
|
||
|
printf("Compressed Pubkey1: ");
|
||
|
print_hex(compressed_pubkey1, sizeof(compressed_pubkey1));
|
||
|
printf("\nSecret Key2: ");
|
||
|
print_hex(seckey2, sizeof(seckey2));
|
||
|
printf("Compressed Pubkey2: ");
|
||
|
print_hex(compressed_pubkey2, sizeof(compressed_pubkey2));
|
||
|
printf("\nShared Secret: ");
|
||
|
print_hex(shared_secret1, sizeof(shared_secret1));
|
||
|
|
||
|
/* This will clear everything from the context and free the memory */
|
||
|
secp256k1_context_destroy(ctx);
|
||
|
|
||
|
/* It's best practice to try to clear secrets from memory after using them.
|
||
|
* This is done because some bugs can allow an attacker to leak memory, for
|
||
|
* example through "out of bounds" array access (see Heartbleed), Or the OS
|
||
|
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
||
|
*
|
||
|
* Here we are preventing these writes from being optimized out, as any good compiler
|
||
|
* will remove any writes that aren't used. */
|
||
|
secure_erase(seckey1, sizeof(seckey1));
|
||
|
secure_erase(seckey2, sizeof(seckey2));
|
||
|
secure_erase(shared_secret1, sizeof(shared_secret1));
|
||
|
secure_erase(shared_secret2, sizeof(shared_secret2));
|
||
|
|
||
|
return 0;
|
||
|
}
|